Answer:
m = 4.65 kg
Explanation:
As we know that the mass of the water that evaporated out is given as

so the energy released in form of vapor is given as



now the heat required by remaining water to bring it from 15 degree to 100 degree



total heat required for above conversion

now by heat energy balance
heat given by granite = heat absorbed by water


We take the derivative of Ohm's law with respect to time: V = IR
Using the product rule:
dV/dt = I(dR/dt) + R(dI/dt)
We are given that voltage is decreasing at 0.03 V/s, resistance is increasing at 0.04 ohm/s, resistance itself is 200 ohms, and current is 0.04 A. Substituting:
-0.03 V/s = (0.04 A)(0.04 ohm/s) + (200 ohms)(dI/dt)
dI/dt = -0.000158 = -1.58 x 10^-4 A/s
When the Skydiver jump out a plane, his Potential Energy is being converted or transform into Kinetic energy due to gravity. Hope this helps
To help you I need to assume a wavelength and then calculate the momentum.
The momentum equation for photons is:
p = h / λ , this is the division of Plank's constant by the wavelength.
Assuming λ = 656 nm = 656 * 10 ^ - 9 m, which is the wavelength calcuated in a previous problem, you get:
p = (6.63 * 10 ^-34 ) / (656 * 10 ^ -9) kg * m/s
p = 1.01067 * 10^ - 27 kg*m/s which must be rounded to three significant figures.
With that, p = 1.01 * 10 ^ -27 kg*m/s
The answers are rounded to only 2 significan figures, so our number rounded to 2 significan figures is 1.0 * 10 ^ - 27 kg*m/s
So, assuming the wavelength λ = 656 nm, the answer is the first option: 1.0*10^-27 kg*m/s.