Answer:
[H⁺] = 1.58 x 10⁻⁷ M.
Explanation:
∵ pOH = - log[OH⁻]
7.20 = - log[OH⁻]
log[OH⁻] = - 7.20
∴ [OH⁻] = 6.31 x 10⁻⁸.
∵ [H⁺][OH⁻] = 10⁻¹⁴.
∴ [H⁺] = 10⁻¹⁴/[OH⁻] = 10⁻¹⁴/(6.31 x 10⁻⁸) = 1.585 x 10⁻⁷ M.
Answer: Option (c) is the correct answer.
Explanation:
A chemical reaction is defined as the reaction where a chemical bond will break in order to form a new bond due to the formation of a new substance.
For example, 
Here, NaCl is the new substance that is formed. A chemical reaction will always bring change in chemical composition of a substance.
The production of hydrogen gas from water, the tarnishing of a copper penny, charging a cellular phone and burning a plastic water bottle are all chemical reactions.
Whereas a reaction where no change in chemical composition of a substance takes place is known as a physical reaction.
For example, chopping a log into sawdust will change the shape but it will not bring any change in chemical composition of the substance.
Thus, we can conclude that in the following list, only chopping a log into sawdust is not an example of a chemical reaction.
Explanation:
The given data is as follows.
Energy of radiation absorbed by the electron in hydrogen atom = 
As energy is absorbed as a photon. Hence, frequency will be calculated will be as follows.
E = 
=
= 
or,
=
It is known that, 
= 
And, according to De-Broglie equation 
as, p = 
So, 
= 
Now, on squaring both the sides we get the following.
=
=

where, m = mass of electron
So, 
= 
=
J
Since, K.E = 
= 
= 
Thus, we can conclude that kinetic energy acquired by the electron in hydrogen atom is
.
It's a cube so the volume = edge^3
Volume = 2.5^3 cm^3 = 15.625 cm^3
density = mass / volume = 42.20 / 15.625 = 2.70 You have 3 places of accuracy.
density of object = 2.70 grams / cm^3 <<<<=== answer.
First, we are using the ideal gas law to get n the number of moles:
PV = nRT
when P is the pressure = 748 mmHg/760 = 0.984 atm
V is the volume = 4 L
R is ideal gas constant = 0.0821
T is the temperature in Kelvin = 300 K
∴ n = 0.984atm*4L/0.0821*300
= 0.1598 moles
when the concentration = moles * (1000g / mass)
= 0.1598 * (1000g / 58 g )
= 2.755 M
when the freezing point = 5.5 °C
and Kf = - 5.12 °C/m
∴ the freezing point for the solution = 5.5 °C + (Kf*m)
= 5.5 °C - (5.12°C/m * 2.755m)
= -8.6 °C