Answer:
Is this on edgenuity or some type of virtual school Lmk and then i could help !
Explanation:
Answer:
It is the energy the ions absorb when they form a crystalline compound.
Explanation:
Lattice energy is the energy released upon the formation of a crystal lattice structure.
Answer:
PNO₂ = 0.49 atm
PN₂O₄ = 0.45 atm
Explanation:
Let's begin with the equation of ideal gas, and derivate from it an equation that involves the density (ρ = m/V).
PV = nRT
n = m/M (m is the mass, and M the molar mass)


PxM = ρRT
ρ = PxM/RT
With the density of the gas mixture, we can calculate the average of molar mass (Mavg), with the constant of the gases R = 0.082 atm.L/mol.K, and T = 16 + 273 = 289 K

0.94Mavg = 63.9846
Mavg = 68.0687 g/mol
The molar mass of N is 14 g/mol and of O is 16 g/mol, than
g/mol and
g/mol. Calling y the molar fraction:

And,


So,





The partial pressure is the molar fraction multiplied by the total pressure so:
PNO₂ = 0.52x0.94 = 0.49 atm
PN₂O₄ = 0.48x0.94 = 0.45 atm
Solution:
After the reaction of mixture is worked-up Washing three times the organic with sodium carbonate helps to decrease the solubility of the organic layer into the aqueous layer. This allows the organic layer to be separated more easily.
And then the reaction washed by saturated NACL we have The bulk of the water can often be removed by shaking or "washing" the organic layer with saturated aqueous sodium chloride (otherwise known as brine). The salt water works to pull the water from the organic layer to the water layer.
Using the combined gas law, where PV/T = constant, we first solve for PV/T for the initial conditions: (4.50 atm)(36.0 mL)/(10.0 + 273.15 K) = 0.57213.
Remember to use absolute temperature.
For the final conditions: (3.50 atm)(85.0 mL)/T = 297.5/T
Since these must equal, 0.57213 = 297.5/T
T = 519.98 K
Subtracting 273.15 gives 246.83 degC.