Answer:
for this problem, 2.5 = (5+2/2)-(5-2/2)erf (50×10-6m/2Dt)
It now becomes necessary to compute the diffusion coefficient at 750°C (1023 K) given that D0= 8.5 ×10-5m2/s and Qd= 202,100 J/mol.
we have D= D0exp( -Qd/RT)
=(8.5×105m2/s)exp(-202,100/8.31×1023)
= 4.03 ×10-15m2/s
Answer:
The current is changing at the rate of 0.20 A/s
Explanation:
Given;
inductance of the inductor, L = 5.0-H
current in the inductor, I = 3.0 A
Energy stored in the inductor at the given instant, E = 3.0 J/s
The energy stored in inductor is given as;
E = ¹/₂LI²
E = ¹/₂(5)(3)²
E = 22.5 J/s
This energy is increased by 3.0 J/s
E = 22.5 J/s + 3.0 J/s = 25.5 J/s
Determine the new current at this given energy;
25.5 = ¹/₂LI²
25.5 = ¹/₂(5)(I²)
25.5 = 2.5I²
I² = 25.5 / 2.5
I² = 10.2
I = √10.2
I = 3.194 A/s
The rate at which the current is changing is the difference between the final current and the initial current in the inductor.
= 3.194 A/s - 3.0 A/s
= 0.194 A/s
≅0.20 A/s
Therefore, the current is changing at the rate of 0.20 A/s.
Answer:
The peak current carried by the axon is 5.85 x 10⁻⁸ A
Explanation:
Given;
distance of the field from the axon, r = 1.3 mm
peak magnetic field strength, B = 9 x 10⁻¹² T
To determine the peak current carried by the axon, apply the following equation;

where;
B is the peak magnetic field
r is the distance of the magnetic field from axon
μ is permeability of free space = 4π x 10⁻⁷
I is the peak current
Re-arrange the equation and solve for "I"

Therefore, the peak current carried by the axon is 5.85 x 10⁻⁸ A
Answer:
So instantaneous velocity after 9 sec will be 88.2 m/sec
Explanation:
We have given time t = 9 sec
As the object is released from rest so its initial velocity u = 0 m/sec
We have to find its final velocity v
Acceleration due to gravity 
From first equation of motion we know that 

So instantaneous velocity after 9 sec will be 88.2 m/sec
Answer:
The expression of gravitational field due to mass
at a distance 
Explanation:
We have given mass is 
Distance of the point where we have to find the gravitational field is 
Gravitational constant G
We have to find the gravitational filed
Gravitational field is given by 
This will be the expression of gravitational field due to mass
at a distance 