Let
upthrust = T
weight = W = mg
Air resistance = F
When balloon is descending, air resistance acts upwards (positive)
By Newton's first law, the net force on the balloon is zero, or
T+F-W=0......................(1)
Let w=weight of material dumped so that balloon now travels upwards at constant speed.
Air resistance acts against motion, namely downwards.
The Newton's equation now reads
T-F-(W-w)=0................(2)
Subtract (2) from (1)
T+F-W - (T-F-(W-w)) = 0
Solve for w
w=2F, or
the WEIGHT of material to be released equals twice the resistance of air.
<h2>For Second Solid Lumped System is Applicabe</h2>
Explanation:
Considering heat transfer between two identical hot solid bodies and their environments -
- If the first solid is dropped in a large container filled with water, while the second one is allowed to cool naturally in the air than for second solid, the lumped system analysis more likely to be applicable
- The reason is that a lumped system analysis is more likely to be applicable in the air than in water as the convection heat transfer coefficient so that the Biot number is less than or equal to 0.1 that is much smaller in air
Biot number = the ratio of conduction resistance within the body to convection resistance at the surface of the body
∴ For a lumped system analysis Biot number should be less than 0.1
First, we have to calculate the normal forces on different surfaces.The normal force on the 4.00 kg, N1 = (4)(9.8) = 39.2 N. The normal force on the 10.0 kg, N2 = (14)(9.8) = 137.2 N. Looking at the 10.0 kg block, the static forces that counteract the pulling force equals the sum of the friction from the two surfaces. Fc = N1 * 0.80 + N2 * 0.80 = 141.12 N. Since the counter force is less than the pulling force, the blocks start to move and hence, kinetic frictions are considered.
Therefore, f1 = uk * N1 = (0.60)(39.2) = 23.52 N.
<span>E = h x f </span>
<span>. . . then : </span>
<span>f = E / h </span>
<span>f = 4,41•10^-19 / 6,62•10^-34 </span>
<span>f = 6,66•10^14 Hz (s^-1) </span>
<span>b/ What is the wavelength of this light ? </span>
<span>- - - - - - - - - - - - - - - - - - - - - - - - - - - - </span>
<span>λ = c / f </span>
<span>λ = 3•10^8 / 6,66•10^14 </span>
<span>λ = 4,50•10^-7 m </span>
As we know that range of the projectile motion is given by

here we know that range will be same for two different angles
so here we can say the two angle must be complementary angles
so the two angles must be

so it is given that one of the projection angle is 75 degree
so other angle for same range must be 90 - 75 = 15 degree
so other projection angle must be 15 degree