Answer:
Kathmandu
Explanation:
As the altitude get higher, the gravitational pull of the earth on the object increases, therefore, the mass is higher up above.
Answer:
14.4 m/s
Explanation:
mass of Anna (Ma) = 68 kg
speed of Anna (Va) = 17 m/s
mass of SandraDay (Ms) = 76 kg
speed of SandraDay (Vs) = 12 m/s
We can find their speed (V) immediately after collision from the conservation of momentum where
(Ma x Va) + (Ms + Vs) = (Ma + Ms) x V
where V = speed immediately after collision
(68 x 17) + (76 + 12) = (68 + 76) x V
2068 = 144 V
V = 2068 / 144 = 14.4 m/s
Answer:
303 Ω
Explanation:
Given
Represent the resistors with R1, R2 and RT
R1 = 633
RT = 205
Required
Determine R2
Since it's a parallel connection, it can be solved using.
1/Rt = 1/R1 + 1/R2
Substitute values for R1 and RT
1/205 = 1/633 + 1/R2
Collect Like Terms
1/R2 = 1/205 - 1/633
Take LCM
1/R2 = (633 - 205)/(205 * 633)
1/R2 = 428/129765
Take reciprocal of both sides
R2 = 129765/428
R2 = 303 --- approximated
Answer:
Explanation:
Let v be the linear velocity , ω be the angular velocity and I be the moment of inertia of the the puck.
Kinetic energy ( linear ) = 1/2 mv²
Rotational kinetic energy = 1/2 I ω²
I = 1/2 m r² ( m and r be the mass and radius of the puck )
Rotational kinetic energy = 1/2 x1/2 m r² ω²
= 1/4 m v² ( v = r ω )
Total energy
= Kinetic energy ( linear ) + Rotational kinetic energy
= 1/2 mv² + 1/4 m v²
= 3/4 mv²
rotational K E / Total K E = 1/4 m v² / 3/4 mv²
= 1 /3
So 1 /3 rd of total energy is rotational K E.
Refer to the diagram shown below.
i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω
Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5 (10
Also,
R₂*i = 9.5 (2)
Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A
From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)
Answer: 0.08 Ω