answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
2 years ago
7

Four different observers are standing in a straight line on a street and hear a siren from a police car. Each person recorded th

eir observations in the chart shown. If the people are all lined up on the street at different blocks, and the police siren starts at block 3, which statement describes what block each person is standing at? Wycleff is on block 1, Lilly is on block 4, Quincy is on block 12, and Emilia is on block 17. Lilly is on block 1, Wycleff is on block 4, Quincy is on block 12, and Emilia is on block 17. Lilly is on block 1, Wycleff is on block 4, Emilia is on block 12, and Quincy is on block 17. Wycleff is on block 1, Lilly is on block 4, Emilia is on block 12, and Quincy is on block 17.
Physics
1 answer:
Amanda [17]2 years ago
7 0

Answer:

Wycleff is on block 1, Lilly is on block 4, Emilia is on block 12, and Quincy is on block 17.

Explanation:

Wycleff was at block 1 and heard a low pitch sound the whole time, so the police car must have been moving away from him.

Lilly observed was in block 4 change in pitch first.  So the car must have passed her first.

Emilia was at block 12 observed a Doppler effect after Lilly.  So the car passed her after passing Lilly

Quincy was at block 17 so she heard a high pitch sound the whole time, so the police car must have been moving toward him.

You might be interested in
The blade of metal cutter is shorter than that scissors of tailors<br><br>​
Naily [24]

Explanation:it is beause they are sharper and also have less surface area and therefore more pressure

8 0
2 years ago
Consider the position vs. time graph below for a woman's movement in a hallway. What is the woman's velocity from 4 to 5 s?
Ksenya-84 [330]

Answer:

The answer is "6\  \frac{m}{s}"

Explanation:

The formula for velocity:

\to \overline{v}={\frac{\Delta x}{\Delta t}}

      =\frac{6}{1}\\\\=6\  \frac{m}{s}

7 0
1 year ago
A box sliding on a horizontal frictionless surface runs into a fixed spring, compressing it a distance x1 from its relaxed posit
inn [45]

Answer:twice of initial value

Explanation:

Given

spring compresses x_1 distance for some initial speed

Suppose v is the initial speed and k be the spring constant

Applying conservation of energy

kinetic energy converted into spring Elastic potential energy

\dfrac{1}{2}mv^2=\dfrac{1}{2}kx_1^2----1

When speed doubles

\dfrac{1}{2}m(2v)^2=\dfrac{1}{2}kx_2^2----2

divide 1 and 2

\dfrac{1}{4}=\dfrac{x_1^2}{x_2^2}

x_2=2x_1

Therefore spring compresses twice the initial value

   

7 0
2 years ago
A 10kg rocket is traveling at 80 m/s when the booster engine applies a constant forward force of 60 N for 3.0 seconds. What impu
Lina20 [59]

Answer:

Impulse = 90

Resulting Velocity = 89

Explanation:

Use F * change in time = m * change in velocity.

For the first part of the question, the left side of the equation is the impulse. Plug it in.

60 * (3.0 - 0) = 90.

For the second half. we use all parts of the equation. I'm gonna use vf for the final velocity.

60 * (3.0 - 0) = 10 * (vf - 80). Simplify.

90 = 10vf - 800. Simplify again.

890 = 10vf. Divide to simplify and get the answer.

The resulting velocity is 89.

4 0
2 years ago
Rotational dynamics about a fixed axis: A person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface
FrozenT [24]

Answer:

I = 2 kgm^2

Explanation:

In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:

\tau=I\alpha     (1)

I: moment of inertia of the door

α: angular acceleration of the door = 2.00 rad/s^2

τ: torque exerted on the door

You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:

\tau=Fd        (2)

F: force = 5.00 N

d: distance to the hinges = 0.800 m

You replace the equation (2) into the equation (1), and you solve for α:

Fd=I\alpha\\\\I=\frac{Fd}{\alpha}

Finally, you replace the values of all parameters in the previous equation for I:

I=\frac{(5.00N)(0.800m)}{2.00rad/s^2}=2kgm^2

The moment of inertia of the door around the hinges is 2 kgm^2

3 0
2 years ago
Other questions:
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    11·2 answers
  • What is the atomic number z of 73li?
    12·2 answers
  • A circular loop of wire is rotated at constant angular speed about an axis whose direction can be varied. In a region where a un
    7·1 answer
  • A worker kicks a flat object lying on a roof. The object slides up the incline 10.0 m to the apex of the roof, and flies off the
    7·1 answer
  • While riding a multispeed bicycle, the rider can select the radius of the rear sprocket that is fixed to the rear axle. The fron
    7·1 answer
  • A boy of mass 80 kg slides down a vertical pole, and a frictional force of 480 N acts on him. What is his acceleration as he sli
    5·1 answer
  • Wave motion is characterized by two velocities: the velocity with which the wave moves in the medium (e.g., air or a string) and
    12·1 answer
  • A 0.311 kg tennis racket moving 30.3 m/s east makes an elastic collision with a 0.0570 kg ball moving 19.2 m/s east find the vel
    10·1 answer
  • 49. A vertically hung 0.50-meter- long spring is stretched from its equilibrium position to a length of 1.00 meter by a weight a
    6·1 answer
  • A 2.70 kg cat is sitting on a windowsill. The cat is sleeping peacefully until a dog barks at him. Startled, the cat falls from
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!