Let events
A=Nathan has allergy
~A=Nathan does not have allergy
T=Nathan tests positive
~T=Nathan does not test positive
We are given
P(A)=0.75 [ probability that Nathan is allergic ]
P(T|A)=0.98 [probability of testing positive given Nathan is allergic to Penicillin]
We want to calculate probability that Nathan is allergic AND tests positive
P(T n A)
From definition of conditional probability,
P(T|A)=P(T n A)/P(A)
substitute known values,
0.98 = P(T n A) / 0.75
solving for P(T n A)
P(T n A) = 0.75*0.98 = 0.735
Hope this helps!!
Answer:
Only Elijah's model is correct
Step-by-step explanation:
The data given in the question tells us they have 12 games left on their soccer team. Each one of them tried to simulate the fact by creating some model which look like a balance between quantities.
Elijah placed 3 cubes of value 1 and a cube of value x on one side of a balance. On the other side, he placed 15 cubes of value 1. He was obviously modeling the fact that 15 cubes (games due to play in our case) should be equal to 3 cubes (games already played) plus the x numbers left to play
This model if perfect, since the only way to equilibrate the balance is setting x to 12, the games left to play
Jonathan used a table with 3 x's in a row and a 15 in the second row, trying to model the same situation. To our interpretation, this table doesn't show the number of games left to play. If we equate 3x = 15, we get x=5 which has nothing to do with the situation explained in the question, so this model is not correct.
Answer:
1/5
Step-by-step explanation:
i had a similar question
For each roll you start with paying 2 dollars and you only with 10 dollars one out of 6 rolls (on average).
So the cost for one play is 2 dollars and your win is 10/6.
Value is -2+10/6=-1/3 dollars
So you lose 1/3 dollars on average with each game
since you have no limited rolls u put 1/5
this from another question but both same just different numbers
Answer:
Considering all seven-digit numbers that can be created from the digits 0-9 I could deduce that you can make 100 , 700, 800 even infinite numbers
Answer:
Answer is B on Edge
F(x)=14-x
Step-by-step explanation: