The molecular formula for compound is
mass of compound is 0.670 g.
To calculate number of atoms first calculate number of moles in the compound as follows:

Molar mass of
is 283.886 g/mol, thus,

Thus, number of mole of
is 0.00236 mol.
From the molecular formula 1 mole of
has 2 mol of P (phosphorus) and 5 mol of O (oxygen).
Thus, number of moles of P and O in 0.00236 mol of
will be:

Similarly,

Now, in 1 mol of an element there are
atoms.
Number of atoms of P will be:

Similarly, number of atoms of O will be:

Total number of atoms will be sum of number of atoms of P and O:

Therefore, total number of atoms in
will be
.
Answer:
(d) 3,7-dimethyl-4-nonyne.
Explanation:
Hello,
In this case, considering the attached picture on which you can see that the main chain has nine carbon atoms, one tripe bond at the fourth carbon and two methyl radicals at the third and seventh carbons respectively, by following the IUPAC rules, the name would be: (d) 3,7-dimethyl-4-nonyne since the chain must start at the side closest to the first triple bond due to its priority and subsequently considering the present radicals.
Best regards.
<span>There is only one formula to use and we should assume ideal gas. This equation is: PV=nRT. For the following questions manipulate this equation to get the answer.
1. n = PV/RT = (249*1000 Pa)(15.6 L)(1 m^3/1000 L)/(8.314 Pa-m^3/mol-K))(21+273) = 1.59 mol
2. P = nRT/V = (1.59)(8.314)(51+273)/(15.6/1000)(1000) = 274.55 kPa
3. Since the answer in #2 is more than 269 kPa, then the tires will likely burst.
4. Reduce pressure way below the limit 269 kPa.</span>
Answer:
Explanation:
When filling a burette for a titrant, adjust the burette so that the opening is near or below the eye leve preferably over the sink.
Then, use a funnel to add the titrant into the burette.
The titrant should be filled almost to the zero mark.
<span>According to my knowledge, I feel the answer is -
Particles that struck the center of the atom were repelled.
Hope this helps!
</span>