answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
azamat
2 years ago
6

A charge of +Q is fixed in space. A second charge of +q was first placed at a distance r1 away from +Q. Then it was moved along

a straight line to a new position at a distance R away from its starting position. The final location of +q is at a distance r2 from +Q.
What is the change in the potential energy of charge +q during this process?
(A) kQq/R
(B) kQqR/r12
(C) kQqR/r22
(D) kQq((1/r2)-(1/r1))
(E) kQq((1/r1)-(1/r2))
Physics
1 answer:
olga55 [171]2 years ago
5 0

Answer:

Option (D)

Explanation:

The formula for the potential energy between the two charges is given by

U=\frac{KQq}{r}

where, r is the distance between the two charges.

In first case the distance between the two charges is r1.

The potential energy is

U_{1}=\frac{KQq}{r_{1}}

In first case the distance between the two charges is r2.

The potential energy is

U_{2}=\frac{KQq}{r_{2}}

The change in potential energy is

\Delta U = U_{2}-U_{1}

\Delta U=\frac{KQq}{r_{2}}-\frac{KQq}{r_{1}

\Delta U=KQq \times \left ( \frac{1}{r_{2}} -\frac{1}{r_{2}} \right )

You might be interested in
A visitor to the observation deck of a skyscraper manages to drop a penny over the edge. As the penny falls faster, the force du
pentagon [3]
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
8 0
2 years ago
Read 2 more answers
a child hits a ball with a force of 350 N. (a) If the ball and bat are in contact for 0.12 is, what impulse does the ball receiv
Lina20 [59]

Explanation:

Given that,

Force with which a child hits a ball is 350 N

Time of contact is 0.12 s

We need to find the impulse received by the ball. The impulse delivered is given by :

J=F\times t\\\\J=350\times 0.12\\\\J=42\ N-m

So, the impulse is 42 N-m..

We know that he change in momentum is also equal to the impulse delivered.

So, impulse = 42 N-m and change in momentum =42 N-m.

7 0
2 years ago
A person is working on a steel structure while standing on the ground. An accident occurred where 5 A pass through the structure
matrenka [14]

Answer:

35mA

Explanation:

Hello!

To solve this problem we must use the following steps

1. Find the electrical resistance of the metal rod using the following equation

R=\alpha  \frac{l}{a}

WHERE

α=

metal rod resistivity=2x10^-4 Ωm

l=leght=2m

A=  Cross-sectional area

A=\frac{\pi }{4} d^2=\frac{\pi }{4} (0.06)^2=0.00283

solving

R=(2x10^-4)\frac{2}{0.00283} =0.14

2. Now we model the system as a circuit with parallel resistors, where we will call 1 the metal rod and 2 the man(see attached image)

3.we know that the sum of the currents in 1 and 2 must be equal to 5A, by the law of conservation of energy

I1+I2=5

4.as the voltage on both nodes is the same we can use ohm's law in resitance 1 and 2 (V=IR)

V1=V2

(0.14I1)=2000(i2)

solving for i1

I1=14285.7i2

5.Now we use the equation found in step 3

14285.7i2+i2=5

i2=\frac{5}{14285.7+1} =3.5x10^-4A=35mA

6 0
2 years ago
A thin film of polystyrene is used as an antireflective coating for fabulite (known as the substrate). the index of refraction o
kvasek [131]

To solve this problem, we assume that the wavelength of the light in air is 500 nanometers.

For this case we only need the refractive index of the polystyrene. For an antireflective coating, we need a quarter of wave thickness at the wavelength in the air. Which means that the antireflective coating needs to be as thick as 1/4 of the wavelength, divided by the coating’s refractive index. This is expressed mathematically in the form:

x = λ / (4 * n)

where,

x = thickness

λ = wavelength of light

n = index of refraction of polystyrene

Substituting:

x = 500 nm / (4 * 1.49)
x = 500 nm / 5.96
x = 83.90 nm

6 0
2 years ago
Two weights are connected by a very light cord that passes over an 80.0Nfrictionless pulley of radius 0.300m. The pulley is a so
Citrus2011 [14]

Answer:

The force does the ceiling exert on the hook is 269.59 N

Explanation:

Applying the second Newton law:

F = m*a

From the attached diagram, the net force in object 1 is:

m_{1} a=T_{1} -W_{1}

In object 2:

m_{2} a=W_{2} -T_{2}

Adding the two equations:

m_{2} a+m_{1} a=T_{1} -W_{1} +W_{2} -T_{2} \\m_{1} =\frac{W_{1} }{g} \\m_{2} =\frac{W_{2} }{g} \\Replacing\\T_{2}-T_{1}=W_{2}   -W_{1} -(\frac{W_{1} }{g} +\frac{W_{2} }{g} )a  (eq. 1)

The torque:

\tau =I\alpha

Where

I = moment of inertia

α = angular acceleration

If the linear acceleration is

a=r\alpha \\\alpha =\frac{a}{r} \\I=\frac{1}{2} mr^{2} \\\tau =\frac{mra}{2}

Torque due the tension is equal:

\tau =r(T_{2} -T_{1} )

Substituting torque, mass, in equation 1, the expression respect the acceleration is:

a=\frac{g*(W_{2}-W_{1})}{W_{1}+W_{2} +\frac{W}{2} }

Where

W₁ = 75 N

W₂ = 125 N

W = 80 N

a=\frac{9.8*(125-75)}{75+125+\frac{80}{2} } =2.04m/s^{2}

The net force is:

F_{n} =F-W-T_{1} -T_{2}\\0=F-W-W_{1} (\frac{a}{g} +1)-W_{2} (1-\frac{a}{g})\\F=W+W_{1} +W_{2} +\frac{a}{g} (W_{1} -W_{2} )\\F=80+75+125+\frac{2.04}{9.8} (75-125)\\F=269.59N

4 0
2 years ago
Other questions:
  • A mercury thermometer has a glass bulb of interior volume 0.100 cm3 at 10°c. the glass capillary 10) tube above the bulb has an
    7·2 answers
  • What is the acceleration of a ball rolling down a ramp that starts from rest and travels 0.9 m in 3 s?
    15·1 answer
  • A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
    6·1 answer
  • A hollow cylinder of mass 2.00 kg, inner radius 0.100 m, and outer radius 0.200 m is free to rotate without friction around a ho
    7·1 answer
  • Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between its te
    11·1 answer
  • During a game the same batter swings at a ball thrown by the pitcher and hits a line drive. Just before the ball is hit it is tr
    7·1 answer
  • A solenoid 10.0 cm in diameter and 75.0 cm long is made from copper wire of diameter 0.100 cm, with very thin insulation. The wi
    6·2 answers
  • A one-dimensional particle-in-a-box may be used to illustrate the import kinetic energy quantization in covalent bond formation.
    6·1 answer
  • You are flying a hang glider at 14 mph in the northeast direction (45°). The wind is blowing at 4 mph from due north.
    11·1 answer
  • A molecule of ethanol has two carbon atoms, six hydrogen atoms, and one oxygen atom. A ball-and-stick model of a molecule of eth
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!