Answer:
t=0.704s
Explanation:
A child is running his 46.1 g toy car down a ramp. The ramp is 1.73 m long and forms a 40.5° angle with the flat ground. How long will it take the car to reach the bottom of the ramp if there is no friction?
from newton equation of motion , we look for the y component of the speed and look for the x component of the speed. we can then find the resultant of the speed

Vy^2=0+2*9.8*1.73sin40.5
Vy^2=22.021
Vy=4.69m/s
Vx^2=u^2+2*9.81*cos40.5
Vy^2=25.81
Vy=5.08m/s
V=(Vy^2+Vx^2)^0.5
V=47.71^0.5
V=6.9m/s
from newtons equation of motion we know that force applied is directly proportional to the rate of change in momentum on a body.
f=force applied
v=velocity final
u=initial velocity
m=mass of the toy, 0.046
f=ma
f=m(v-u)/t
v=u+at
6.9=0+9.8t
t=6.9/9.81
t=0.704s
Answer:
The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J
Explanation:
The given variables are
Work done = 550 J
Volume change = V₂ - V₁ = -0.5V₁
Thus the product of pressure and volume change = work done by gas, thus
P × -0.5V₁ = 500 J
Hence -PV₁ = 1000 J
also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂
Also to compress the gas by a factor of 11 we have
P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11 = 909.091 J of work
Answer:
5702.88 J or 5.7mJ
Explanation:
Given that :
C 1 = 6.0-μF
C 2 = 4.0-μF
V 1 = 50V
V 2 = 34V
Note that : Q = CV
Q 1 = C1 * V1
Q 1 = 50×6 = 300μC
Q 2 = 34×4 = 136μC
Parallel connection = C 1 + C 2
= 6+4 = 10μC
V = Qt/C
Where Qt = Q1+Q2
V = Q1+Q2/C
V = 300+136/10
V = 437/10
V = 43.6volts
Uc1 = 1/2×C1V^2
= 1/2 × 6μF × 43.6^2
= 1/2 × 6μF × 1900.96
= 3μF × 1900.96volts
= 5702.88J
= 5702.88J/1000
= 5.7mJ
Answer:
- asses disease progression and tissue function
- utilize a biologically active molecule
- utilize a radionuclide tracer
Explanation:
Answer: deceleration of 
Explanation:
Given
Car is traveling at a speed of u=20 m/s
The diameter of the car is d=70 cm
It slows down to rest in 300 m
If the car rolls without slipping, then it must be experiencing pure rolling i.e. 
Using the equation of motion

Insert 

Write acceleration as 

So, the car must be experiencing the deceleration of
.