Answer:
The partial pressure of neon in the vessel was 239 torr.
Explanation:
In all cases involving gas mixtures, the total gas pressure is related to the partial pressures, that is, the pressures of the individual gaseous components of the mixture. Put simply, the partial pressure of a gas is the pressure it exerts on a mixture of gases.
Dalton's law states that the total pressure of a mixture of gases is equal to the sum of the pressures that each gas would exert if it were alone. Then:
PT= P1 + P2 + P3 + P4…+ Pn
where n is the amount of gases present in the mixture.
In this case:
PT=PN₂ + PAr + PHe + PNe
where:
- PT= 987 torr
- PN₂= 44 torr
- PAr= 486 torr
- PHe= 218 torr
- PNe= ?
Replacing:
987 torr= 44 torr + 486 torr + 218 torr + PNe
Solving:
987 torr= 748 torr + PNe
PNe= 987 torr - 748 torr
PNe= 239 torr
<u><em>The partial pressure of neon in the vessel was 239 torr.</em></u>
Answer would be B. I provided work on an image attached. Message me if u have any other questions on how to do it
Answer:
0.3023 M
Explanation:
Let Picric acid = 
So,
+
⇄
+ 
The ICE table can be given as:
+
⇄
+ 
Initial: 0.52 0 0
Change: - x + x + x
Equilibrium: 0.52 - x + x + x
Given that;
acid dissociation constant (
) = 0.42
![K_a = \frac{[H_3O^+][Picric^-]}{H_{picric}}](https://tex.z-dn.net/?f=K_a%20%3D%20%5Cfrac%7B%5BH_3O%5E%2B%5D%5BPicric%5E-%5D%7D%7BH_%7Bpicric%7D%7D)
![0.42 = \frac{[x][x]}{0.52-x}}](https://tex.z-dn.net/?f=0.42%20%3D%20%5Cfrac%7B%5Bx%5D%5Bx%5D%7D%7B0.52-x%7D%7D)
![0.42 = \frac{[x]^2}{0.52-x}}](https://tex.z-dn.net/?f=0.42%20%3D%20%5Cfrac%7B%5Bx%5D%5E2%7D%7B0.52-x%7D%7D)
0.42(0.52-x) = x²
0.2184 - 0.42x = x²
x² + 0.42x - 0.2184 = 0 -------------------- (quadratic equation)
Using the quadratic formula;
; ( where +/- represent ± )
= 
= 
=
OR 
=
OR 
=
OR 
= 0.30225 OR - 0.72225
So, we go by the +ve integer that says:
x = 0.30225
x = [
] = [
] = 0.3023 M
∴ the value of [H3O+] for an 0.52 M solution of picric acid = 0.3023 M (to 4 decimal places).
Answer:
The pH of the buffer is 7.0 and this pH is not useful to pH 7.0
Explanation:
The pH of a buffer is obtained by using H-H equation:
pH = pKa + log [A⁻] / [HA]
<em>Where pH is the pH of the buffer</em>
<em>The pKa of acetic acid is 4.74.</em>
<em>[A⁻] could be taken as moles of sodium acetate (14.59g * (1mol / 82g) = 0.1779 moles</em>
<em>[HA] are the moles of acetic acid (0.060g * (1mol / 60g) = 0.001moles</em>
<em />
Replacing:
pH = 4.74 + log [0.1779mol] / [0.001mol]
<em>pH = 6.99 ≈ 7.0</em>
<em />
The pH of the buffer is 7.0
But the buffer is not useful to pH = 7.0 because a buffer works between pKa±1 (For acetic acid: 3.74 - 5.74). As pH 7.0 is out of this interval,
this pH is not useful to pH 7.0
<em />
I would say that Candace's answer is d. wide-ranging. she didn't get the exact / precise (they mean the same thing) answer.