Equilibrium equation is
<span>Ag2CO3(s) <---> 2 Ag+(aq) + CO32-(aq) </span>
<span>From the reaction equation above, the formula for Ksp: </span>
<span>Ksp = [Ag+]^2 [CO32-] = 8.1 x 10^-12 </span>
<span>You know [CO32-], so you can solve for [Ag+] as: </span>
<span>(8.1 x 10^-12) = [Ag+]^2 (0.025) </span>
<span>[Ag+]^2 = 3.24 x 10^-10 </span>
<span>[Ag+] = 1.8 x 10^-5 M </span>
Answer:
748 torr
Explanation:
mmHg and torr are equivalent so, you'll have 748 torr.
Answer:
the correct answer is (sp3d2) (d)
Explanation:
18g is the most reasonable mass after the reaction
Answer:
No, it is not.
Explanation:
Most solutions do not behave ideally. Designating two volatile substances as A and B, we can consider the following two cases:
Case 1: If the intermolecular forces between A and B molecules are weaker than those between A molecules and between B molecules, then there is a greater tendency for these molecules to leave the solution than in the case of an ideal solution. Consequently, the vapor pressure of the solution is greater than the sum of the vapor pressures as predicted by Raoult’s law for the same concentration. This behavior gives rise to the positive deviation.
Case 2: If A molecules attract B molecules more strongly than they do their own kind, the vapor pressure of the solution is less than the sum of the vapor pressures as predicted by Raoult’s law. Here we have a negative deviation.
The benzene/toluene system is an exception, since that solution behaves ideally.