Answer:
(1) passed through the foil
Explanation:
Ernest Rutherford conducted an experiment using an alpha particle emitter projected towards a gold foil and the gold foil was surrounded by a fluorescent screen which glows upon being struck by an alpha particle.
- When the experiment was conducted he found that most of the alpha particles went away without any deflection (due to the empty space) glowing the fluorescent screen right at the point of from where they were emitted.
- While a few were deflected at reflex angle because they were directed towards the center of the nucleus having the net effective charge as positive.
- And some were acutely deflected due to the field effect of the positive charge of the proton inside the nucleus. All these conclusions were made based upon the spot of glow on the fluorescent screen.
Answer:
0.106
Explanation:
For 1 liter of diesel the car can get 19 km, if it takes 0.2 MJ for each km then it would take the total energy of 19*0.2 = 3.8 MJ to move an aerodynamic car 19 km. Since 1 liter of of diesel also contains 36 MJ in internal energy, then the efficiency of the diesel engine is the ratio of its output energy over its input energy:

Answer:
(a) 62.5 m
(b) 7.14 s
Explanation:
initial speed, u = 35 m/s
g = 9.8 m/s^2
(a) Let the rocket raises upto height h and at maximum height the speed is zero.
Use third equation of motion


h = 62.5 m
Thus, the rocket goes upto a height of 62.5 m.
(b) Let the rocket takes time t to reach to maximum height.
By use of first equation of motion
v = u + at
0 = 35 - 9.8 t
t = 3.57 s
The total time spent by the rocket in air = 2 t = 2 x 3.57 = 7.14 second.
Answer:
F = Gm1m2/r^2 where G = 6.67x10^-11, m1 =1300, m2 = 7800, r = 0.23m
F = 6.67x10^-11 *1300*7800/(0.23)^2 = 0.0127852N
Explanation:
Answer:
3. none of these
Explanation:
The rotational kinetic energy of an object is given by:

where
I is the moment of inertia
is the angular speed
In this problem, we have two objects rotating, so the total rotational kinetic energy will be the sum of the rotational energies of each object.
For disk 1:

For disk 2:

so the total energy is

So, none of the options is correct.