answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allushta [10]
2 years ago
13

A jet is travelling at a speed of 1200 km/h and drops cargo from a height of 2.5 km above the ground Calculate the time it takes

for the cargo to hit the ground and the range it travels
Physics
1 answer:
OLEGan [10]2 years ago
7 0

a) Time of flight: 22.6 s

To calculate the time it takes for the cargo to reach the ground, we just consider the vertical motion of the cargo.

The vertical position at time t is given by

y(t) = h +u_y t - \frac{1}{2}gt^2

where

h = 2.5 km = 2500 m is the initial height

u_y = 0 is the initial vertical velocity of the cargo

g = 9.8 m/s^2 is the acceleration of gravity

The cargo reaches the ground when

y(t) = 0

So substituting it into the equation and solving for t, we find the time of flight of the cargo:

0 = h - \frac{1}{2}gt^2\\t=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2(2500)}{9.8}}=22.6 s

b) 7.5 km

The range travelled by the cargo can be calculated by considering its horizontal motion only. In fact, the horizontal motion is a uniform motion, with constant velocity equal to the initial velocity of the jet:

v_x = 1200 km/h \cdot \frac{1000 m/km}{3600 s/h}=333.3 m/s

So the horizontal distance travelled is

d=v_x t

And if we substitute the time of flight,

t = 22.6 s

We find the range of the cargo:

d=(333.3)(22.6)=7533 m = 7.5 km

You might be interested in
Which of the following planets helped astronomers locate another planet?
worty [1.4K]

Answer: Pluto,Mercury

Explanation:

6 0
2 years ago
A more realistic car would cause the wheels to spin in a manner that would result in the ground pushing it forward with a consta
-Dominant- [34]

The car would go from  zero to 58.0 mph in 2.6 sec.

Since the force on the car is constant, therefore the acceleration of the car would also be constant.

Now for constant acceleration we can use the equation of motion

Using first equation of motion to calculate the acceleration of the car

v=u+at

29=0+a×1.30       ...... Eq. (1)

Again using the first equation of motion

58=0+a*t             ....... Eq. (2)

Dividing eq. (2) with equation 1

t=2×1.3

t=2.6 sec

7 0
2 years ago
There is an electromagnetic wave traveling in the -z direction in a standard right-handed coordinate system. What is the directi
wlad13 [49]

Answer: The direction of the electric field, E→, is pointed in the +y direction.

Explanation:

One can use the right hand rule to illustrate the direction of travel of an electromagnetic and thereby get the directions of the electric field, magnetic field and direction of travel of the wave.

The right hand rule states that the direction of the thumb indicate the direction of travel of the electromagnetic wave (<em>in this case the -z direction</em>) and the curling of the fingers point in the direction of the magnetic field  B→ (<em>in this case the +x direction</em>), therefore, the electric field direction E→ is in the direction of the fingers which would be pointed towards the +y direction.

6 0
2 years ago
 A bartender slides a beer mug at 1.50 m/s toward a customer at the end of a frictionless bar that is 1.20 m tall. The customer
Andrew [12]

Answer:

a) the mug hits the floor 0.7425m away from the end of the bar. b) |V|=5.08m/s θ= -72.82°

Explanation:

In order to solve this problem, we must first start by doing a drawing of the situation. (see attached picture).

a)

From the drawing we can see that we are dealing with a two dimensions movement problem. So in order to find out how far away from the bar the mug will fall, we need to start by finding how long it will take the mug to be in the air, so we analyze the vertical movement of the mug.

In order to find the time we need to use the following formula, which contains the data we know:

y_{f}=y_{0}+v_{y0}t+\frac{1}{2}at^{2}

we know that y_{f}=0 and that v_{y0}=0 as well, so the formula is simplified to:

0=y_{0}+\frac{1}{2}at^{2}

we can now solve this for t, so we get:

-y_{0}=\frac{1}{2}at^{2}

-2y_{0}=at^{2}

\frac{-2y_{0}}{a}=t^{2}

t=\sqrt{\frac{-2y_{0}}{a}}

we know that y_{0}=1.20m and that a=g=-9.8m/s^{2}

the acceleration of gravity is negative because the mug is moving downwards. So we substitute them into the given formula:

t=\sqrt{\frac{-2(1.20m)}{(-9.8m/s^{2})}}

which yields:

t=0.495s

we can now use this to find the horizontal distance the mug travels. We know that:

V_{x}=\frac{x}{t}

so we can solve this for x, so we get:

x=V_{x}t

and we can now substitute the values we know:

x=(1.5m/s)(0.495s)

which yields:

x=0.7425m

b) Now that we know the time it takes the mug to hit the floor, we can use it to find the final velocity in the y-direction by using the following formula:

a=\frac{v_{f}-v_{0}}{t}

we know the initial velocity in the vertical direction is zero, so we can simplify the formula:

a=\frac{v_{f}}{t}

so we can solve this for the final velocity:

V_{yf}=at

in this case the acceleration is the same as the acceleration of gravity (which is negative) so we can substitute that and the time we found on the previous part to get:

V_{yf}=(-9.8m/s^{2})(0.495s)

which yields:

V_{yf}=-4.851m/s

so now we know the components of the final velocity, which are:

V_{xf}=1.5m/s and V_{yf]=-4.851m/s

so now we can find the speed by determining the magnitude of the vector, like this:

|V|=\sqrt{V_{x}^{2}+V_{y}^{2}}

so we get:

|V|=\sqrt{(1.5m/s)^{2}+(-4.851m/s)^{2}

which yields:

|V|=5.08m/s

now, to find the direction of the impact, we can use the following equation:

\theta = tan^{-1} (\frac{V_{y}}{V_{x}})

so we get:

\theta = tan^{-1} (\frac{-4.851m/s}{(1.5m/s)})

which yields:

\theta = -72.82^{o}

4 0
2 years ago
When a gas is rapidly compressed (say, by pushing down a piston) its temperature increases. When a gas expands against a piston,
shusha [124]

Answer:

Explained in explanation

Explanation:

The first law of thermodynamics states that the change in internal energy of a system(ΔU) is equal to the sum of the net heat transfer into the system(Q) and the net work done on the system(W). In equation, this law is;

ΔU = Q + W

Now, when there's gas inside a container with a movable piston that's tightly fitting, we will assume that the piston can move up and down thereby compressing the gas or allowing the gas to expand against it.

Now these gas molecules inside the container possess kinetic energy. Thus, the internal energy(U) of the system is simply the sum of all the kinetic energies of the individual gas molecules present in the container.

Therefore, if the temperature(T) of the gas increases, then the speed and internal energy(U) of the gas molecules will also increase. In the same way, if the temperature of the gas decreases, the speed and internal energy of the gas molecules would also decrease.

Now, back to the question, when the piston is pushed down, it does work on the gas and the gas does negative work on the piston. Thus, the gas will be get compressed to a smaller space, and thereby making the gas molecules to hit the piston at a faster rate. Thus, there is a decrease in speed and as we saw earlier that when there is a decrease in speed, it means temperature has decreased.

Whereas, when the piston is moved up, the gas does positive work on the piston and the speed of the gas molecules will increase. Like I said earlier that increase in speed means increase in temperature.

4 0
2 years ago
Other questions:
  • Which statements accurately describe mass? Check all that apply. Mass is a chemical property of an object. Mass is measured usin
    9·2 answers
  • Assuming the same current is running through two separate coils, why is it easier to thrust a magnet into a wire coil with one l
    6·2 answers
  • Marcia is given an incomplete chemical equation that includes the number of nitrogen atoms present in the products of the reacti
    5·2 answers
  • Select all that apply. Greenhouse gases _____. absorb solar energy absorb carbon dioxide release carbon dioxide are released dur
    7·1 answer
  • A calorimeter has a heat capacity of 1265 J/oC. A reaction causes the temperature of the calorimeter to change from 22.34oC to 2
    14·2 answers
  • A goat enclosure is in the shape of a right triangle. One leg of the enclosure is built against the side of the barn. The other
    8·1 answer
  • Two blocks, 1 and 2, are connected by a rope R1 of negligible mass. A second rope R2, also of negligible mass, is tied to block
    9·1 answer
  • g A coil formed by wrapping 50 turns of wire in the shape of a square is positioned in a magnetic field so that the normal to th
    5·1 answer
  • A swimmer standing near the edge of a lake notices a cork bobbing in the water. While watching for one minute, she notices the c
    10·1 answer
  • A pillow is thrown downward with an initial speed of 6 m/s.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!