answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zvonat [6]
2 years ago
12

You are called as an expert witness to analyze the following auto accident: Car B, of mass 2000 kg, was stopped at a red light w

hen it was hit from behind by car A, of mass 1300 kg. The cars locked bumpers during the collision and slid to a stop. Measurements of the skid marks left by the tires showed them to be 7.25 m long, and inspection of the tire tread revealed that the coefficient of kinetic friction between the tires and the road was 0.65.a) What was the speed of car A just before the collision? b) If the speed limit was 35mph, was car A speeding, and if so, by how many miles per hour was it exceeding the speed limit? c) Explain why we can classify the collision as completely inelastic d) Calculate the total kinetic energy before and after the collision
Physics
1 answer:
OLga [1]2 years ago
8 0

Answer:

a). va=17.23 \frac{m}{s} or 38.54 mph

b). v=38.54 mph and limit is 35 mph

c). Completely inelastic

d). Eka=192.967 kJ

Ekt=76.071 kJ

Explanation:

m_{a}=1300kg\\m_{b}=2000kg\\x_{f}=7.25m\\u_{k}=0.65

The motion is an inelastic collision so

m_{a}*v_{a}+m_{b}*v_{b}=(m_{a}+m_{b})*v_{f}

The force of the motion is contrarest by the force of friction so

F-F_{uk} =0\\F=F_{uk}\\F_{uk}=u_{k}*m*g\\F=m*a\\a=\frac{F}{m}\\ a=\frac{F_{uk}}{m}\\a=\frac{u_{k}*m*g}{m}\\a=u_{k}*g\\a=0.65*9.8\frac{m}{s^{2}} \\a=6.39\frac{m}{s^{2}}

Now with the acceleration can find the time and the velocity final that make the distance 7.25m being united

x_{f}=x_{o}+v_{o}*t+2*a*t^{2}\\x_{o}=0\\v_{o}=0\\x_{f}=2*a*t^{2}\\t^{2}=\frac{x_{f}}{2*a}\\t=\sqrt{\frac{7.25m}{6.37\frac{m}{s^{2} } } } \\t=1.06s

So the velocity final can be find using this time

v_{f}=v_{o}+a*t\\v_{o}=0\\v_{f}=6.37\frac{m}{s^{2} } *1.06s\\v_{f}=6.79 \frac{m}{s}

a).

Replacing in the first equation the final velocity can find the initial velocity

m_{a}*v_{a}+m_{b}*v_{b}=(m_{a}+m_{b})*v_{f}

v_{b}=0

v_{a}= \frac{(m_{a}+m_{b)*v_{f}}}{m_{a}}\\v_{a}= \frac{(1300+2000)*6.37}{1300}\\v_{a}=17.23 \frac{m}{s}

b).

35mph*\frac{1m}{0.000621371mi} *\frac{1h}{3600s}=15.646\frac{m}{s}

Velocity limit in m/s is 15.646 m/s and the initial velocity is 17.23 m/s

so is exceeding the speed limit in about 1.58 m/s

or in miles per hour

3.5 mph

c).

The collision is complete inelastic because any mass can be returned to the original mass, so even they are no the same mass however in the moment they move the distance 7.25m as a same mass the motion is considered completely inelastic

d).

Ek=\frac{1}{2}*m*(v)^{2}\\  Eka=\frac{1}{2}*1300kg*(17.23\frac{m}{s})^{2}\\Eka=192.967 kJ\\Ekt=\frac{1}{2}*m*(v)^{2}\\Ekt=\frac{1}{2}*3300kg*(6.79\frac{m}{s})^{2}\\Ekt=76.071 kJ

You might be interested in
A particle of mass M is moving in the positive x direction with speed v. It spontaneously decays into 2 photons, with the origin
anygoal [31]

Solution :

Mass of the particle = M

Speed of travel = v

Energy of one photon after the decay which moves in the positive x direction = 233 MeV

Energy of second photon after the decay which moves in the negative x direction = 21 MeV

Therefore, the total energy after the decay is = 233 + 21

                                                                           = 254 MeV

So by the law of conservation of energy, we have :

Total energy before the decay = total energy after decay

So, the total relativistic energy of the particle before its decay = 254 MeV  

7 0
2 years ago
A 500 kg motorcycle accelerates at a rate of 2 m/s .how much force was applied to the motorcycle?
Aleksandr [31]

Answer:

by using formula F=ma which is m stand for mass a stand for acceleration. so 500kg × 2 ms^-2

8 0
2 years ago
Read 2 more answers
3. A large crane lifts a 25,000 kg mass in the air. The amount of work that must be done by the
andreev551 [17]

\mathfrak{\huge{\orange{\underline{\underline{AnSwEr:-}}}}}

Actually Welcome to the concept of Efficiency.

Here we can see that, the Input work is given as 2.2 x 10^7 J and the efficiency is given as 22%

The efficiency is => 22% => 22/100.

so we get as,

E = W(output) /W(input)

hence, W(output) = E x W(input)

so we get as,

W(output) = (22/100) x 2.2 x 10^7

=> W(output) = 0.22 x 2.2 x 10^7 => 0.484 x 10^7

hence, W(output) = 4.84 x 10^6 J

The useful work done on the mass is 4.84 x 10^6 J

5 0
2 years ago
The apartment’s explosion, reportedly caused by a gas leak, produced a violent release of gas and heat. the heat increased the _
uranmaximum [27]
<h2>Apartment Explosion Reported </h2>

The apartment’s explosion, reportedly caused by a gas leak, produced a violent release of gas and heat. The heat increased the temperature of the air in the room, which means an increase in the air's molecular kinetic energy.

When heat is provided then temperature increases and the molecules of substances move rapidly by increase of kinetic energy (K.E) temperature increases. It is understood that heat increases temperature.

6 0
2 years ago
Read 2 more answers
A fireboat is to fight fires at coastal areas by drawing seawater with a density of 1030 kg/m3 through a 10-cm-diameter pipe at
GaryK [48]

Answer:

50.93 m/s

199.5 kW

Explanation:

From the question, the nozzle exit diameter = 5 cm, Radius= diameter/2= 5cm/2= 2.5cm. we can convert it to metre for unit consistency= (2.5×0.01)=

0.025m

We can calculate the The cross sectional area of the nozzle as

A= πr^2

A= π ×0.025^2

= 1.9635 ×10^- ³ m²

From the question, the water is moving through the pipe at a rate of 0.1 m /s , then for the water to move through it at a seconds, it must move at

(0.1 / 1.9635 ×10^- ³ m²)

= 50.93 m/s

During the Operation of the pump, the Dynamic energy of the water= potential energy provided there is no loss during the Operation

mgh = 1/2mv²

We can make "h" subject of the formula, which is the height of required head of water

h = (1/2mv²)/mg

h= v² / 2g

h = 50.93² / (2 ×9.81)

h = 132.21m

From the question;

The total irreversible head loss of the system = 3 m,

the given position of nozzle = 3 m

the total head the pump needed=(The total irreversible head loss of the system + the position of the nozzle + required head of water )

=(3 + 3 + 132.21m)

=138.21m

mass of water pumped in a seconds can be calculated since we know that mass is a product of volume and density

Volume= 0.1m³

Density of sea water=1030 kg/m

(0.1 m^3× 1030)

= 103kg

We can calculate the Potential enegry, which is = mgh

= (103 ×9.81 × 138.21)

= 139651.5 Watts

= 139.65kW

To determine required shaft power input to the pump and the water discharge velocity

Energy= efficiency × power

But we are given efficiency of 70 percent, then

139651.5 Watts = 0.7P

=199502.18 Watts

P=199.5 kW

Therefore, the required shaft power input to the pump and the water discharge velocity is 199.5 kW

5 0
1 year ago
Other questions:
  • A rocket lifts off the pad at cape canaveral. according to newton's law of gravitation, the force of gravity on the rocket is gi
    10·1 answer
  • Describe the energy transformations that occur from the time a skydiver jumps out of a plane until landing on the ground.
    13·2 answers
  • Five metal samples, with equal masses, are heated to 200oC. Each solid is dropped into a beaker containing 200 ml 15oC water. Wh
    5·1 answer
  • A target in a shooting gallery consists of a vertical square wooden board, 0.250 m on a side and with mass 0.750 kg, that pivots
    14·1 answer
  • A suspicious-looking man runs as fast as he can along a moving sidewalk from one end to the other, taking 2.20 s. Then security
    7·1 answer
  • The particle with charge q is now released and given a quick push; as a result, it acquires speed v. Eventually, this particle e
    10·1 answer
  • The figure above represents a stick of uniform density that is attached to a pivot at the right end and has equally spaced marks
    13·1 answer
  • How much heat is required to convert 18.0 g of ice at -10.0C to steam at 100.0C? Express your answer in joules, calories, and Bt
    6·1 answer
  • An infinitely long cylinder of radius R has linear charge density λ. The potential on the surface of the cylinder is V0, and the
    9·1 answer
  • A student throws a 0.22 kg rock horizontally at 20.0 m/s from 10.0 m above the ground. Find the initial kinetic energy of the ro
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!