Explanation:
3
i believe that they are all going at 3.2 meters each, I did 4 times 0.8
First make sure you draw a force diagram. You should have Fn going up, Fg going down, Ff going left and another Fn going diagonally down to the right. The angle of the diagonal Fn (we'll call it Fn2) is 35° and Fn2 itself is 80N. Fn2 can be divided into two forces: Fn2x which is horizontal, and Fn2y which is vertical. Right now we only care about Fn2y.
To solve for Fn2y we use what we're given and some trig. Drawing out the actual force of Fn2 along with Fn2x and Fn2y we can see it makes a right triangle, with 80 as the hypotenuse. We want to solve for Fn2y which is the opposite side, so Sin(35)=y/80. Fn2y= 80sin35 = 45.89N
Next we solve for Fg. To do this we use Fg= 9.8 * m. Mass = 30kg, so Fg = 9.8 * 30 = 294N.
Since the chair isn't moving up or down, we can set our equation equal to zero. The net force equation in the vertical direction will be Fn + Fn2y -Fg = 0. If we plug in what we know, we get Fn + 45.89 -294 = 0. Then solve this algebraically.
Fn +45.89 -294 = 0
Fn +45.89 = 294
Fn = 248.11 N
You'll get a more accurate answer if you don't round Fn2y when solving for it, it would be something along the lines of 45.88611 etc
Answer:
Length, l = 33.4 m
Explanation:
Given that,
Electrical field, 
Let the electrical potential is, 
We need to find the length of a thundercloud lightning bolt. The relation between electric field and the electric potential is given by :

So, the length of a thundercloud lightning bolt is 33.4 meters. Hence, this is the required solution.
The second problem requires a figure to be answered. For the first problem
The acceleration of the sack is
1.5² - 0² = 2a(0.2)
a = 5.63 m/s2
The reaction of the ramp is
F = 8 kg (5.63 m/s2)
F = 45 N
Differentiate the kinematic equation involving time to get the rate of increase of the velocity.
Answer:
0.83 ω
Explanation:
mass of flywheel, m = M
initial angular velocity of the flywheel, ω = ωo
mass of another flywheel, m' = M/5
radius of both the flywheels = R
let the final angular velocity of the system is ω'
Moment of inertia of the first flywheel , I = 0.5 MR²
Moment of inertia of the second flywheel, I' = 0.5 x M/5 x R² = 0.1 MR²
use the conservation of angular momentum as no external torque is applied on the system.
I x ω = ( I + I') x ω'
0.5 x MR² x ωo = (0.5 MR² + 0.1 MR²) x ω'
0.5 x MR² x ωo = 0.6 MR² x ω'
ω' = 0.83 ω
Thus, the final angular velocity of the system of flywheels is 0.83 ω.