answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
2 years ago
9

Given that an electric field of 3×106V/m3×106V/m is required to produce an electrical spark within a volume of air, estimate the

length of a thundercloud lightning bolt.
Physics
1 answer:
Andre45 [30]2 years ago
5 0

Answer:

Length, l = 33.4 m

Explanation:

Given that,

Electrical field, E=3\times 10^6\ V/m

Let the electrical potential is, V=10^8\ V

We need to find the length of a thundercloud lightning bolt. The relation between electric field and the electric potential is given by :

V=E\times d\\\\d=\dfrac{V}{E}\\\\d=\dfrac{10^8}{3\times 10^6}\\\\d=33.4\ m

So, the length of a thundercloud lightning bolt is 33.4 meters. Hence, this is the required solution.

You might be interested in
Denise is conducting a physics experiment to measure the acceleration of a falling object when it slows down and comes to a stop
iren [92.7K]
We need a and we have m and F . Now a = f÷m so therefore a = 4,9 ÷ 0,5 which is 0,98 metres per cubic second
4 0
2 years ago
Read 2 more answers
A particle with a charge of -1.24 x 10"° C is moving with instantaneous velocity (4.19 X 104 m/s)î + (-3.85 X 104 m/s)j. What is
astra-53 [7]

Answer:

(a) F= 6.68*10¹¹⁴ N (-k)

(b) F =( 6.68*10¹¹⁴ i  + 7.27*10¹¹⁴ j  ) N

Explanation

To find the magnetic force in terms of a fixed amount of charge q that moves at a constant speed v in a uniform magnetic field B we apply the following formula:

F=q* v X B Formula (1 )

q: charge (C)

v: velocity (m/s)

B: magnetic field (T)

vXB : cross product between the velocity vector and the magnetic field vector

Data

q= -1.24 * 10¹¹⁰ C

v= (4.19 * 10⁴ m/s)î + (-3.85 * 10⁴m/s)j

B  =(1.40 T)i  

B  =(1.40 T)k

Problem development

a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)i =

            = - (-3.85*1.4) k = 5.39* 10⁴ m/s*T (k)

1T= 1 N/ C*m/s

We apply the formula (1)

  F= 1.24 * 10¹¹⁰ C*  5.39* 10⁴ m/s* N/ C*m/s (-k)

   F= 6.68*10¹¹⁴ N (-k)

a)  vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)k =

             =( - 5.39* 10⁴i - 5.87* 10⁴j)m/s*T

1T= 1 N/ C*m/s

We apply the formula (1)

F= 1.24 * 10¹¹⁰ C*  (  5.39* 10⁴i + 5.87* 10⁴j) m/s* N/ C*m/s

F =( 6.68*10¹¹⁴  i  + 7.27*10¹¹⁴  j  ) N

8 0
2 years ago
ASK YOUR TEACHER A 2.0-kg mass swings at the end of a light string with the length of 3.0 m. Its speed at the lowest point on it
Nadya [2.5K]

Answer:

  K_b = 78 J

Explanation:

For this exercise we can use the conservation of energy relations

starting point. Lowest of the trajectory

        Em₀ = K = ½ mv²

final point. When it is at tea = 50º

        Em_f = K + U

        Em_f = ½ m v_b² + m g h

where h is the height from the lowest point

        h = L - L cos 50

        Em_f = ½ m v_b² + mg L (1 - cos50)

energy be conserve

        Em₀ = Em_f

         ½ mv² = ½ m v_b² + mg L (1 - cos50)

         K_b = ½ m v_b² + mg L (1 - cos50)

let's calculate

          K_b = ½ 2.0 6.0² + 2.0 9.8 6.0 (1 - cos50)

          K_b = 36 +42.0

          K_b = 78 J

4 0
2 years ago
A high school physics instructor catches one of his students chewing gum in class. He decides to discipline the student by askin
KengaRu [80]

a) 219.8 rad/s

b) 20.0 rad/s^2

c) 2.9 m/s^2

d) 7005 m/s^2

e) Towards the axis of rotation

f) 0 m/s^2

g) 31.9 m/s

Explanation:

a)

The angular velocity of an object in rotation is the rate of change of its angular position, so

\omega=\frac{\theta}{t}

where

\theta is the angular displacement

t is the time elapsed

In this problem, we are told that the maximum angular velocity is

\omega_{max}=35 rev/s

The angle covered during 1 revolution is

\theta=2\pi rad

Therefore, the maximum angular velocity is:

\omega_{max}=35 \cdot 2\pi = 219.8 rad/s

b)

The angular acceleration of an object in rotation is the rate of change of the angular velocity:

\alpha = \frac{\Delta \omega}{t}

where

\Delta \omega is the change in angular velocity

t is the time elapsed

Here we have:

\omega_0 = 0 is the initial angular velocity

\omega_{max}=219.8 rad/s is the final angular velocity

t = 11 s is the time elapsed

Therefore, the angular acceleration is:

\alpha = \frac{219.8-0}{11}=20.0 rad/s^2

c)

For an object in rotation, the acceleration has two components:

- A radial acceleration, called centripetal acceleration, towards the centre of the circle

- A tangential acceleration, tangential to the circle

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

Here we have

\alpha =20.0 rad/s^2

d = 29 cm is the diameter, so the radius is

r = d/2 = 14.5 cm = 0.145 m

So the tangential acceleration is

a_t=(20.0)(0.145)=2.9 m/s^2

d)

The magnitude of the radial (centripetal) acceleration is given by

a_c = \omega^2 r

where

\omega is the angular velocity

r is the radius of the circle

Here we have:

\omega_{max}=219.8 rad/s is the angular velocity when the fan is at full speed

r = 0.145 m is the distance of the gum from the centre of the circle

Therefore, the radial acceleration is

a_c=(219.8)^2(0.145)=7005 m/s^2

e)

The direction of the centripetal acceleration in a rotational motion is always towards the centre of the axis of rotation.

Therefore also in this case, the direction of the centripetal acceleration is towards the axis of rotation of the fan.

f)

The magnitude of the tangential acceleration of the fan at any moment is given by

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

When the fan is rotating at full speed, we have:

\alpha=0, since the fan is no longer accelerating, because the angular velocity is no longer changing

r = 0.145 m

Therefore, the tangential acceleration when the fan is at full speed is

a_t=(0)(0.145)=0 m/s^2

g)

The linear speed of an object in rotational motion is related to the angular velocity by the formula:

v=\omega r

where

v is the linear speed

\omega is the angular velocity

r is the radius

When the fan is rotating at maximum angular velocity, we have:

\omega=219.8 rad/s

r = 0.145 m

Therefore, the linear speed of the gum as it is un-stucked from the fan will be:

v=(219.8)(0.145)=31.9 m/s

7 0
2 years ago
A steel ball bearing with a radius of 1.5 cm forms an image of an object that has been placed 1.1 cm away from the bearing’s sur
Nonamiya [84]

Answer:

Check the explanation

Explanation:

given

R = 1.5 cm

object distance, u = 1.1 cm

focal length of the ball, f = -R/2

= -1.5/2

= -0.75 cm

let v is the image distance

use, 1/u + 1/v = 1/f

1/v = 1/f - 1/u

1/v = 1/(-0.75) - 1/(1.1)

v = -0.446 cm <<<<<---------------Answer

magnification, m = -v/u

= -(-0.446)/1.1

= 0.405 <<<<<<<<<---------------Answer

The image is virtual

The image is upright

given

R = 1.5 cm

object distance, u = 1.1 cm

focal length of the ball, f = -R/2

= -1.5/2

= -0.75 cm

let v is the image distance

use, 1/u + 1/v = 1/f

1/v = 1/f - 1/u

1/v = 1/(-0.75) - 1/(1.1)

v = -0.446 cm <<<<<---------------Answer

magnification, m = -v/u

= -(-0.446)/1.1

= 0.405 <<<<<<<<<---------------Answer

Kindly check the diagram in the attached image below.

5 0
2 years ago
Other questions:
  • A spherical balloon is 40 ft in diameter and surrounded by air at 60°F and 29.92 in Hg abs.(a) If the balloon is filled with hyd
    6·2 answers
  • Astronomers initially had difficulty identifying the emission lines in quasar spectra at optical wavelengths because
    8·1 answer
  • A hydraulic press must be used to press-fit two components together in an assembly process. the system must generate at least 77
    13·1 answer
  • What is the energy density in the magnetic field 25 cm from a long straight wire carrying a current of 12 a? (μ0 = 4π × 10-7 t ·
    6·1 answer
  • A father demonstrates projectile motion to his children by placing a pea on his fork's handle and rapidly depressing the curved
    8·1 answer
  • An airplane flying parallel to the ground undergoes two consecutive dis- placements. The first is 75 km 30.0° west of north, and
    9·1 answer
  • A girl tosses a stone into the air with an initial upward velocity of 8.00 meters/second8.00 meters/second and hears the splash
    7·1 answer
  • A 5-kg can of paint is sitting on top of a 2-meter high step ladder. How much work did you do to move the can of paint to the to
    10·1 answer
  • If you wanted to find the area of the hot filament in a light bulb, you would have to know the temperature (determinable from th
    5·1 answer
  • A balky cow is leaving the barn as you try harder and harder to push her back in. In coordinates with the origin at the barn doo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!