Answer : y>0
f(x) = 9*2^x
f(x) is an exponential function

When we plug in positive value for x , the value of y is positive
When we plug in negative value for x , the value y is also positive
So for any value of x, the y value is positive always.
Range is the set of y values for which the function is defined
y values are positive , so range is y >0
I would go with the second statement is true because if all of the other ones mentioned in the problem had something that would not work either the one before or after would make the statement false excepted for statement two
Answer:
A. Yes.
B. Yes.
C. No.
Step-by-step explanation:
A. Yes. The sum of the series,
is the sum of a geometric series.
The first term of the series
= 5.
The common ration or the ratio between successive terms (r) =
(Answer)
B. Yes. The sum of the series,
is also the sum of a geometric series.
The first term of the series
.
The common ration or the ratio between successive terms (r) =
(Answer)
C. No. The sum of the series,
is not the sum of a geometric series.
The first term of the series
.
(Answer)
Answer:
The <em>z</em>-score for the group "25 to 34" is 0.37 and the <em>z</em>-score for the group "45 to 54" is 0.25.
Step-by-step explanation:
The data provided is as follows:
25 to 34 45 to 54
1329 2268
1906 1965
2426 1149
1826 1591
1239 1682
1514 1851
1937 1367
1454 2158
Compute the mean and standard deviation for the group "25 to 34" as follows:
![\bar x=\frac{1}{n}\sum x=\frac{1}{8}\times [1329+1906+...+1454]=\frac{13631}{8}=1703.875\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{8-1}\times 1086710.875}=394.01](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20x%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20%5B1329%2B1906%2B...%2B1454%5D%3D%5Cfrac%7B13631%7D%7B8%7D%3D1703.875%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B8-1%7D%5Ctimes%201086710.875%7D%3D394.01)
Compute the <em>z</em>-score for the group "25 to 34" as follows:

Compute the mean and standard deviation for the group "45 to 54" as follows:
![\bar x=\frac{1}{n}\sum x=\frac{1}{8}\times [2268+1965+...+2158]=\frac{14031}{8}=1753.875\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{8-1}\times 1028888.875}=383.39](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20x%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20%5B2268%2B1965%2B...%2B2158%5D%3D%5Cfrac%7B14031%7D%7B8%7D%3D1753.875%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B8-1%7D%5Ctimes%201028888.875%7D%3D383.39)
Compute the <em>z</em>-score for the group "45 to 54" as follows:

Thus, the <em>z</em>-score for the group "25 to 34" is 0.37 and the <em>z</em>-score for the group "45 to 54" is 0.25.