Answer:
4.1
Step-by-step explanation:
1.8 x 0.5 = 0.9
0.5 x 0.5 = 0.25
2(0.9 + 0.9 + 0.25) = 2(1.8 + 0.25) = 2(2.05)
2 x 2.05 = 4.1
Therefore the answer is 4.1
I hope that was helpful!
In a large population, 61% of the people are vaccinated, meaning there are 39% who are not. The problem asks for the probability that out of the 4 randomly selected people, at least one of them has been vaccinated. Therefore, we need to add all the possibilities that there could be one, two, three or four randomly selected persons who were vaccinated.
For only one person, we use P(1), same reasoning should hold for other subscripts.
P(1) = (61/100)(39/100)(39/100)(39/100) = 0.03618459
P(2) = (61/100)(61/100)(39/100)(39/100) = 0.05659641
P(3) = (61/100)(61/100)(61/100)(39/100) = 0.08852259
P(4) = (61/100)(61/100)(61/100)(61/100) = 0.13845841
Adding these probabilities, we have 0.319761. Therefore the probability of at least one person has been vaccinated out of 4 persons randomly selected is 0.32 or 32%, rounded off to the nearest hundredths.
Point S makes the two connected angles the same. They both have right angles.
And one side of each is congruent.
This means you know 2 angles are the same and one side is the same.
You would use ASA (Angle, Side, Angle)
Answer:
3rd graph down
Step-by-step explanation:
greens are x and carrots are y in my equations
2x - y >= 3
x + 2y < 4
The first equation is solid and will highlight everything to the right of it because it is a >
the second is dashed and will highlight everything to the left of it because it is a <
the only 2 graphs that show this are 1 and 3
looking at the points you can see that the points for the solid line are both the same so ignore those and go to the dashed lined ones.
on the first graph the points are (0,4)
plugging those into our equation gives us 0 + 2*4 <4
or 8<4 which doesnt make sense making 3 the correct graph
(sorry my answer wasnt posting so i had to start over and make it less detailed, but comment if you need any explanation)