Answer:
height of the water rise in tank is 10ft
Explanation:
Apply the bernoulli's equation between the reservoir surface (1) and siphon exit (2)

-------(1)
substitute 
0ft/s for V₁, 20ft for (z₁ - z₂) and 32.2ft/s² for g in eqn (1)


Applying bernoulli's equation between tank surface (3) and orifice exit (4)

substitute

0ft/s for V₃, h for z₃, 0ft for z₄, 32,2ft/s² for g

At equillibrium Fow rate at point 2 is equal to flow rate at point 4
Q₂ = Q₄
A₂V₂ = A₃V₃
The diameter of the orifice and the siphon are equal , hence there area should be the same
substitute A₂ for A₃
for V₂
for V₄
A₂V₂ = A₃V₃

Therefore ,height of the water rise in tank is 10ft
This question deals with the volume of different shapes.
a) volume of the sphere is "33.51 m³".
b) volume of the cylinder is "25.13 m³".
a)
The volume of a sphere is given by the following formula:

<u>Volume = 33.51 m³</u>
<u />
b)
The volume of a cylinder is given by the following formula:

<u>Volume = 25.13 m³</u>
<u />
Learn more about <em>volume </em>here:
brainly.com/question/16686115?referrer=searchResults
The attached picture shows the formulae of the <em>volume</em> of different shapes.
For Newton's second law, the resultant of the forces acting on the book is equal to the product between the mass of the book and its acceleration:

(1)
There are only two forces acting on the book:
- its weight, directed downward: mg
- the force exerted by the hand on the book, of 20 N, directed upward
so, equation (1) becomes

from which we can calculate the book's acceleration, a:
Answer:
Explanation:
Two frequencies with magnitude 150 Hz and 750 Hz are given
For Pipe open at both sides
fundamental frequency is 150 Hz as it is smaller
frequency of pipe is given by

where L=length of Pipe
v=velocity of sound
for n=1
and f=750 is for n=5
thus there are three resonance frequencies for n=2,3 and 4
For Pipe closed at one end
frequency is given by

for n=0


for n=2

Thus there is one additional resonance corresponding to n=1 , between
and 
His average speed is (35m/45s) = 7/9 meters per second.
His average velocity is (30m W + 5m E) / (45s) = 25 m/s West .