The primary additive colors are red, green, and blue, which means that any color can be constructed from a linear superposition of these colors. According to this RGB (Red, Green, Blue) refers to the system for representing colors on a computer display. It is not possible <span>that someone could have a color photograph that cannot be represented using full 24-bit color. Every color photograph can be represented using the RGB.</span>
Answer:
5 mg, 
Explanation:
First of all, let's rewrite the mass in grams using scientific notation.
we have:
m = 0.005 g
To rewrite it in scientific notation, we must count by how many digits we have to move the dot on the right - in this case three. So in scientific notation is

If we want to convert into milligrams, we must remind that
1 g = 1000 mg
So we can use the proportion

and we find

Answers are:
(1) KE = 1 kg m^2/s^2
(2) KE = 2 kg m^2/s^2
(3) KE = 3 kg m^2/s^2
(4) KE = 4 kg m^2/s^2
Explanation:
(1) Given mass = 0.125 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.125 * (16)
KE = 1 kg m^2/s^2
(2) Given mass = 0.250 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.250 * (16)
KE = 2 kg m^2/s^2
(3) Given mass = 0.375 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.375 * (16)
KE = 3 kg m^2/s^2
(4) Given mass = 0.500 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.5 * (16)
KE = 4 kg m^2/s^2
Explanation:
It is given that,
Area of square coil, 
Side of the square, L = 0.02 m
Number of turns, N = 10000
Uniform magnetic field, B = 1.5 T
Speed, v = 100 m/s
An emf is induced in the coil which is given by :


E = 30000 V
Breakdown voltage of air, 
Let d is the gap between the two wires connected to the ends of the coil and still get a spark. So,
Electric field, 

d = 0.075 m
Hence, this is the required solution.
Answer:
h = 10 m
Explanation:
given,
mass of platform = 50 Kg
Kinetic energy = 5000 J
height from which the diver dove = ?
taking acceleration due to gravity = 10 m/s²
using conservation of energy
Kinetic energy is converted into mechanical energy
K.E = P.E
K.E = m g h
5000 = 50 x 10 x h
500 h = 5000

h = 10 m
The height from which the diver dove is equal to h = 10 m