Answer:
H₂Lv
Explanation:
Lv is at group 6 on the periodic table, so it has 6 valence electrons, likely oxygen. Thus, to be stable, it needs to gain 2 electrons. Hydrogen has 1 electron in its valence shell, so H₂ can share 2 electrons with Lv, and because of that, the product would be:
H₂Lv.
Answer:
strongest oxidizing agent: 
weakest oxidizing agent: 
strongest reducing agent: Y
weakest reducing agent: X
will oxidize Z
Explanation:
The higher the reduction potential of a species, higher will be the tendency to consume electrons from another species. Hence higher will be the oxidizing power of it's oxidized form and lower will be the reducing power of it's reduced form.
Alternatively, higher reduction potential value suggests that the oxidized form of the species acts as a stronger oxidizing agent and the reduced form of the species acts as a weaker reducing agent.
Order of reduction potential:

So, strongest oxidizing agent: 
weakest oxidizing agent: 
strongest reducing agent: Y
weakest reducing agent: X
As reduction potential of the half cell
is higher than the reduction potential of the half cell
therefore
will oxidize Z into
and itself gets converted into X.
Answer:
dispersion forces
Explanation:
SO3 is a trigonal planar molecule. All the dipoles of the S-O bonds cancel out making the molecule to be a nonpolar molecule.
The primary intermolecular force in nonpolar molecules is the London dispersion forces. As expected, the London dispersion forces is the intermolecular force present in SO3.
Hence SO3 is a symmetrical molecule having only weak dispersion forces acting between its molecules.
let me know when u find out plz because i would like to know as well its one of my chemistry qustions in an assiment. :)
Grams of Phosphorus = 4.14 grams
Grams of white compound = 27.8 grams
Grams of Chlorine would be = 27.8 - 4.14 = 23.66 grams
Calculating moles which would be grams / molar mass
Molar mass of P = 30.97 grams / moles; Molar mass of Cl = 35.45 grams / moles
Moles of Phosphorus = 4.14 grams / 30.97 grams / moles = 0.1337 moles
Moles of Chlorine = 23.66 grams / 35.45 grams / moles = 0.6674 moles
Calculating the ratios by dividing with the small entity
P = 0.1337 moles / 0.1337 moles = 1
Cl = 0.6674 moles / 0.1337 moles = 5
So the empirical formula would be PCl5