Answer:- 0.134 seconds
Solution:- The speed is given as
and the circumference is 24900 miles which is same as the distance light have to covered. It asks to calculate the time required to cover this distance by the light.
We need to do unit conversion from miles to meter as the speed is given in meter per second.
1 mile = 1609.34 meter
So, 
= 40072566 meters
Know that, 
It's rearranged to time as, 
Let's plug in the values in it:

= 0.134 seconds
So, the light would take 0.134 seconds to travel the mentioned speed. The answer without the unit is 0.134.
Answer: one simple distillation column is required to separate the stream into five pure products. With four different flat bottom flask, for collection of the distilled products
Explanation: simple distillation works with the difference in boiling points of the liquid to be separated. For the separation of five different constituent to be possible, we have to know the boiling points of the constituents.
For your understanding, let's define constituents in the liquid to be A, B, C, D, E. And the boiling points increases respectively. Start by heating the liquid to the boiling point of A to extract A. After a while check if the constituents A is still dropping in the flat bottom flask, if it has stopped dropping, it simply means that we have extracted all A constituents in the liquid, label the Flask A. Get another flask to extract constituent B.
Heat the mixture to the boiling point of B, after a while check if constituent B is still dropping in the flat bottom flask, if it has stopped dropping,it means that we have extracted all B constituent in the liquid, label the Flask B. Get another flask for C.
Repeat the same process for C and D.
After Extracting D we don't need to distillate E because we already have a pure form of E inside to the conical flask.
SEE PICTURE TO UNDERSTAND WHAT A SIMPLE DISTILLATION LOOKS LIKE
<u>Answer:</u> The enthalpy of the reaction for the production of
is coming out to be -74.9 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(CH_4(g))})]-[(1\times \Delta H^o_f_{(C(s))})+(2\times \Delta H^o_f_{(H_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CH_4%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-74.9))]-[1\times 0)+(2\times 0)]\\\\\Delta H^o_{rxn}=-74.9kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-74.9%29%29%5D-%5B1%5Ctimes%200%29%2B%282%5Ctimes%200%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-74.9kJ)
Hence, the enthalpy of the reaction for the production of
is coming out to be -74.9 kJ
Answer:
-169°C to -104°C
Explanation:
Ethene, also known as ethylene exists in solid, liquid and gaseous states. Ethene is an aliens with condensed structural formula C2H4. Athens is a colourless gas. It is flammable and is also a sweet smelling gas in its pure form. It is the monomer in the production of polyethylene which is of great importance in the plastic industry. In agriculture, it is used to induce the ripening of fruits. It can be hydrated in order to produce ethanol.
The liquid range of ethene refers to the temperatures at which ethene is found in the liquid state of matter. It is actually the difference between the melting point and the boiling points of ethene. Hence the liquid range of ethene is -169°C to -104°C