If triangle IUP has angles I=50, U=60, P=70. The longest side of the triangle would be IU because if you draw the triangle and put the amounts of the angles in the correct place you draw a line across from the biggest angle to the side across from it and that gives you the longest side
Answer:
The answer is A
Step-by-step explanation:
87,688 - 86,789 = 899
<span>draw out a triangle and then create three boxes inside by drawing a T. In each of the boxes you've created you need to put one of the letters from the equation. The equation you currently have is F= m*a. To rearrange this equation put the m and the a into the bottom boxes and the F above. Because there is a vertical line between the m and the a, this means you times them. If there is a horizonal line between two letters you divide them. So to find a, you must divide F by m. </span>
In geometry, similar figures are those whose ratios of the corresponding sides are equal and the corresponding angles are congruent. In relation to the volume, we determine first the cube roots of the given and find the ratio as shown below.
s1 / s2 = cube root of (512/343)
= 8/7
The square of this ratio is the ratio of the areas of the figure. If we let x be the area of the smaller figure then,
(8/7)^2 = 192 mm²/ x
The value of x from the equation is 147 mm².
The area therefore of the smaller figure is 147 mm².
The expected value of the amount of average snowfall for over 30 years is 86.7 inches with a standard deviation of 40.4 inches. To verify if this particular trend continues, we must check the significance value of the amount snowfall for the past four years.
Given that the snowfall for past years are as follows: 115.7 inches, 62.9 inches, 168.5 inches, and 135.7 inches.
Thus the mean of the sample would be: (115.7 + 62.9 + 168.5 + 135.7)/4 = 120.7 inches.
To compute for the z-score, we have
z-score = (x – μ) / (σ / √n)
where x is the computed/measured value, μ is the expected mean, σ is the standard deviation, and n is the number of samples.
Using the information we have,
z-score (z) = (120.7 - 86.7) / (40.4/ √4) = 1.68
In order to reject the null hyptohesis our probability value must be less than the significance level of 5%. For our case, since z = 1.68, P-value = 0.093 > 0.05.
Therefore, the answer is B.