The cube root values and a graph of them are shown in the attachment.
_____
The cube root of a negative number is negative. These all have exact (rational) cube roots.
Answer:
80+(15x)
Step-by-step explanation:
10 times 8=80
1.5 times 10=15
so she gets 80 dollars for the first 8 hours then for every extra hour she gets 15 dollars
Answer:
5
Step-by-step explanation:
<u>Given</u>:
A = (a, 14-a)
P = (3a, a^2 +13a -11)
the slope of AP is 7
a > 0
<u>Find</u>:
a
<u>Solution</u>:
The slope of AP is ...
m = (Py -Ay)/(Px -Ax)
7 = (a^2 +13a -11 -(14 -a))/(3a -a)
14a = a^2 +14a -25
25 = a^2
a = √25 = 5 . . . . . the positive solution
The value of 'a' is 5.
_____
<em>Check</em>
The point A is (a, 14-a) = (5, 9).
The point P is (3a, a^2 +13a -11) = (15, 79)
The slope of AP is (79 -9)/(15 -5) = 70/10 = 7.
By definition, the average rate of change is given by:

We evaluate each of the functions in the given interval.
We have then:
For f (x) = x ^ 2 + 3x:
Evaluating for x = -2:

Evaluating for x = 3:

Then, the AVR is:




For f (x) = 3x - 8:
Evaluating for x =4:

Evaluating for x = 5:

Then, the AVR is:



For f (x) = x ^ 2 - 2x:
Evaluating for x = -3:

Evaluating for x = 4:

Then, the AVR is:




For f (x) = x ^ 2 - 5:
Evaluating for x = -1:

Evaluating for x = 1:

Then, the AVR is:




Answer:
from the greatest to the least value based on the average rate of change in the specified interval:
f(x) = x^2 + 3x interval: [-2, 3]
f(x) = 3x - 8 interval: [4, 5]
f(x) = x^2 - 5 interval: [-1, 1]
f(x) = x^2 - 2x interval: [-3, 4]