Answer:

Given:
Object distance (u) = 25.0 cm
Image distance (v) = -50.0 cm
To Find:
Magnification (m)
Explanation:

Substituting values of Image distance(v) & Object distance (u) in the equation:

-(-50) = 50:



Answer:
α = (ω²)/8π
Explanation:
The angular acceleration(α) of the carousel can be determined by using rotational
kinematics:
ω² =ωo² + 2αθ
Let's make α the subject of this equation ;
ω² - ωo² = 2αθ
α = (ω² −ωo²)/2θ
Now, from the question, since initially at rest, thus, ωo = 0
Also,since 2 revolutions, thus, θ = 2 x 2π = 4π since one revolution is 2π
Plugging in the relevant values to get ;
α = (ω²)/2(4π)
α = (ω²)/8π
Answer:
1/2
Explanation:
We need to make a couple of considerations but basically the problem is solved through the conservation of energy.
I attached a diagram for the two surfaces and begin to make the necessary considerations.
Rough Surface,
We know that force is equal to,



Matching the two equation we have,


Applying energy conservation,





Frictionless surface




Given the description we apply energy conservation taking into account the inertia of a sphere. Then the relation between
and
is given by


The gravitational potential energy of the brick is 25.6 J
Explanation:
The gravitational potential energy of an object is the energy possessed by the object due to its position in a gravitational field.
Near the surface of a planet, the gravitational potential energy is given by

where
m is the mass of the object
g is the strength of the gravitational field
h is the height of the object relative to the ground
For the brick in this problem, we have:
m = 8 kg is its mass
g = 1.6 N/kg is the strenght of the gravitational field on the moon
h = 2 m is the height above the ground
Substituting, we find:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly