For a) [Ru(NH₃)₅Cl]SO₄
Ru configuration = d⁶s²
In this complex Ru oxidation number is +3
Ru³⁺ configuration = d⁵
number of

electrons = 5
For b) Na₂[Os(CN)₆]
Os configuration = d⁶s²
In this complex Os oxidation number is +4
Os⁴⁺ configuration = d⁴
number of

electrons = 4
<span>NaCH3COO (s) + HCl (aq) ---> HCH3COO (aq) + NaCl (s)</span>
Answer:
Explanation:
The half-life of K-40 (1.3 billion years) is the time it takes for half of it to decay.
After one half-life, half (50 %) of the original amount will remain.
After a second half-life, half of that amount (25 %) will remain, and so on.
We can construct a table as follows:
No. of Fraction
<u>half-lives</u> <u> t/yr </u> <u>Remaining</u>
0 0 1
1 1.3 billion ½
2 2.6 ¼
3 3.9 ⅛
We see that after 2 half-lives, ¼ of the original mass remains.
Conversely, if two half-lives have passed, the original mass must have been four times the mass we have now.
Original mass = 4 × 2.10 g = 
Answer:
Atoms are made of protons, neutrons and electrons.
Explanation:
The Dalton's atomic theory was an early attempt at describing the properties of atoms. It stipulated that atoms were the smallest indivisible particle of a substance. Chemical reactions occur as a result of a combination or separation of atoms. Atoms of the same element are exactly alike and differ from atoms of other elements. Atoms can neither be created nor destroyed.
As time went on, modern scientific evidence began to modify the original postulates of the Dalton's atomic theory. It was not postulated in 1805 that atoms were composed of subatomic particles; electrons, neutrons and protons. Dalton's theory held the atom to be 'indivisible'. However in 1897, JJ Thompson discovered the electron. Subsequently, the proton and neutrons were discovered. This shows that the atom in itself consisted of even smaller particles.
Answer:
k = 23045 N/m
Explanation:
To find the spring constant, you take into account the maximum elastic potential energy that the spring can support. The kinetic energy of the car must be, at least, equal to elastic potential energy of the spring when it is compressed to its limit. Then, you have:
(1)
M: mass of the car = 1050 kg
k: spring constant = ?
v: velocity of the car = 8 km/h
x: maximum compression of the spring = 1.5 cm = 0.015m
You solve the equation (1) for k. But first you convert the velocity v to m/s:


The spring constant is 23045 N/m