Answer:
D
Explanation:
solution made by mixing 100 mL of 0.100 M HClO and 50 mL of 0.100 M NaOH Can resist pH change when there is little addition of either acid or base, hence it is a buffer solution
Answer:
Non-polar compounds:
,
, 
Polar compounds:
, 
Explanation:
For this question, we must start with the <u>Lewis structure</u> for each molecule and then we can do their respective analysis:
-) 
In this case, we have 4 equal atoms attached to the central atom. Therefore, we have the <u>same magnitude</u> of electronegativity. Chlorine atoms have <u>different and opposite directions.</u> Therefore due to the orientation the dipole moments cancel and the <u>net dipole moment will be zero</u> and the molecule will be non-polar.
-) 
In this case, we have a linear structure in which the magnitude of the dipole moment is the same, but the direction is the <u>opposite</u>. Therefore the dipole moments are canceled and the molecule will be <u>non-polar</u>.
-) 
In this case, we also have a linear structure in which the magnitude of the dipole moment is the same, but the direction is the <u>opposite</u>. Therefore the dipole moments are canceled and the molecule will be <u>non-polar</u>.
-) 
For this molecule, we have a <u>different atom</u>. The hydrogen atom, therefore the magnitude of one of the atoms attached to the central atom is different and the magnitude of the <u>net dipole moment will be different from zero</u> and the molecule will be <u>polar</u>.
-) 
For this molecule, due to the structure of the molecule, the dipole moments of oxygens <u>will not have a totally opposite configuration</u>. Therefore, the net dipole moment will be different from zero and the molecule will be <u>polar</u>.
See figure 1 to further explanations
I hope it helps!
Answer:
[HClO₄] = 11.7M
Explanation:
First of all we need to know, that a weight percent represents, the mass of solute in 100 g of solution.
Let's convert the mass to moles → 70.5 g . 1mol/100.45 g = 0.702 moles
Now we can apply the density to calculate the volume.
Density always refers to solution → Solution density = Solution mass / Solution volume
1.67 g/mL = 100 g / Solution volume
Solution volume = 100 g / 1.67 g/mL → 59.8 mL
To determine molarity (mol/L) we must convert the mL to L
59.8 mL . 1L/1000mL = 0.0598 L
Molarity → Moles of solute in 1L of solution → 0.702 mol / 0.0598 L = 11.7M
Answer:
Option D is correct.
H₂O + CO₂ → H₂CO₃
Explanation:
First of all we will get to know what law of conservation of mass states.
According to this law, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Example:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
Now we will apply this law to given chemical equations:
A) H₂ + O₂ → H₂O
There are two hydrogen and two oxygen atoms present on left side while on right side only one oxygen and two hydrogen atoms are present so mass in not conserved. This equation not follow the law of conservation of mass.
B) Mg + HCl → H₂ + MgCl₂
In this equation one Mg, one H and one Cl atoms are present on left side while on right side two hydrogen, one Mg and two chlorine atoms are present. This equation also not follow the law of conservation of mass.
C) KClO₃ → KCl + O₂
There are one K, one Cl and three O atoms are present on left side of chemical equation while on right side one K one Cl and two oxygen atoms are present. This equation also not following the law of conservation of mass.
D) H₂O + CO₂ → H₂CO₃
There are two hydrogen, one carbon and three oxygen atoms are present on both side of equation thus, mass remain conserved. Thus is correct option.
For the basic solution:
11.2 = -log[H+]
[H+] = 6.31 x 10⁻¹²
For the acidic solution:
2.4 = -log[H+]
[H+] = 3.98 x 10⁻³
The difference:
3.98 x 10⁻³ - 6.31 x 10⁻¹²
≈ 4.0 x 10⁻³
The answer is B