answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
2 years ago
5

Planet A has mass 3M and radius R, while Planet B has mass 4M and radius 2R. They are separated by center-to-center distance 8R.

A rock is released halfway between the planets’ centers at point O. It is released from rest. Ignore any motion of the planets
. - Calculate the magnitude of the rock’s acceleration, in meters per second squared, for M = 7.3×1023 kg and R = 5.8×106 m.
Physics
1 answer:
Aleksandr-060686 [28]2 years ago
5 0

Answer:

Explanation:



In Newton's law of universal gravitation

F = Gm₁m₂/r²

Where G is a gravitational constant = 6.674e-11m³/kgs²

m₁ and m₂ are the masses of the two bodies or objects in question, in kilogram (kg)

r is the distance in meters between them

From the question, the rock is placed halfway between the planets

So, it's distance from planet A is 8R/2 = 4R

And it's distance from planet B is also 8R/2 = 4R

Using F = Gm₁m₂/r²

To Planet A

r = 4R,

m₁ = mass of Rock = m

m₂ = mass of planet A = 3M

So Fa = G mm₂/r² = Gm(3M) / (4R)²

To Planet B,

r = 4R,

m₁ = mass of Rock = m

m₂ = mass of planet B = 4M

Fb = G mm₂/r² = Gm(4M) / (4R)²

Comparing both forces together, we realise that Planet B has the largest force,

so take we F = Fb – Fa

F = Fb – Fa = Gm(4M) / (4R)² – Gm(3M) / (4R)²

F = GmM/16R²)(4–3)

F = GmM/16R²

Note that Force = Mass * Acceleration

So, F = ma

So, ma = GmM/16R² ------- Divide through by m

a = GM/16R²

From the question

M = 7.3×10^23kg

R = 5.8×10^6 m

So, a = (6.674 * 10^-11 * 7.3×10^23)/16(5.8×10^6)²

a = (48.7202 * 10^12)/16(33.64 * 10^12)

a = (48.7202 * 10^12)/(538.4 * 10^12)

a = 48.7202/538.4

a = 0.090517612960760

a = 0.091m/s² ----------Approximated

You might be interested in
You are driving downhill on a rural road with a 3% grade at a speed of 45 mph. While playing on the side of the road, a child ac
Dennis_Churaev [7]

Answer: a) 95.07m b) 81.88 m

Explanation:

a)

For finding the distance when vehicle is going downhill we have the formula as:

Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)

Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31

Reaction time= 0.28

So putting values we get

Stop sight distance= 0.28*72.4 *1  + \frac{(0.28*72.4)^{2} }{2*9.81*(0.31-0.03)}

Stop sight distance= 95.07 m

b)

For finding the distance when vehicle is going uphill we have the formula as:

Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)

Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31

Reaction time= 0.28

So putting values we get

Stop sight distance= 0.28*72.4 *1  + \frac{(0.28*72.4)^{2} }{2*9.81*(0.31+0.03)}

Stop sight distance= 81.88 m

5 0
2 years ago
A stone is thrown vertically upward with a speed of 15.5 m/s from the edge of a cliff 75.0 m high .
rjkz [21]

a) 2.64 s

We can solve this part of the problem by using the following SUVAT equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the stone

u is the initial velocity

t is the time

a is the acceleration

We must be careful to the signs of s, u and a. Taking upward as positive direction, we have:

- s (displacement) negative, since it is downward: so s = -75.0 m

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a= g = -9.8 m/s^2 (acceleration of gravity)

Substituting into the equation,

-75.0 = 15.5 t -4.9t^2\\4.9t^2-15.5t-75.0 = 0

Solving the equation, we have two solutions: t = -5.80 s and t = 2.84 s. Since the negative solution has no physical meaning, the stone reaches the bottom of the cliff 2.64 s later.

b) 10.4 m/s

The speed of the stone when it reaches the bottom of the cliff can be calculated by using the equation:

v=u+at

where again, we must be careful to the signs of the various quantities:

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a = g = -9.8 m/s^2

Substituting t = 2.64 s, we find the final velocity of the stone:

v = 15.5 +(-9.8)(2.64)=-10.4 m/s

where the negative sign means that the velocity is downward: so the speed is 10.4 m/s.

c) 4.11 s

In this case, we can use again the equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the package

u is the initial velocity

t is the time

a is the acceleration

We have:

s = -105 m (vertical displacement of the package, downward so negative)

u = +5.40 m/s (initial velocity of the package, which is the same as the helicopter, upward so positive)

a = g = -9.8 m/s^2

Substituting into the equation,

-105 = 5.40 t -4.9t^2\\4.9t^2 -5.40 t-105=0

Which gives two solutions: t = -5.21 s and t = 4.11 s. Again, we discard the first solution since it is negative, so the package reaches the ground after

t = 4.11 seconds.

5 0
2 years ago
Read 2 more answers
__________ curves help lessen the effect of the force of the forward motion on your vehicle as it enters the curve.
Rainbow [258]

Answer:

Banked

Explanation:

Banked curves are formed when the inner edge is below the outer edge.

It is done in order to ensure the reliability of the frictional force as it varies when the road is wet wet or oily. Thus in order to avoid these problems the curved roads are banked.

Banking of the curve provides the necessary centripetal force, i.e., the horizontal component of the normal reaction force to keep the vehicle i motion and thus helps in reducing the effect of the forward motion force on the vehicle.

5 0
2 years ago
Two weights are connected by a very light cord that passes over an 80.0Nfrictionless pulley of radius 0.300m. The pulley is a so
Citrus2011 [14]

Answer:

The force does the ceiling exert on the hook is 269.59 N

Explanation:

Applying the second Newton law:

F = m*a

From the attached diagram, the net force in object 1 is:

m_{1} a=T_{1} -W_{1}

In object 2:

m_{2} a=W_{2} -T_{2}

Adding the two equations:

m_{2} a+m_{1} a=T_{1} -W_{1} +W_{2} -T_{2} \\m_{1} =\frac{W_{1} }{g} \\m_{2} =\frac{W_{2} }{g} \\Replacing\\T_{2}-T_{1}=W_{2}   -W_{1} -(\frac{W_{1} }{g} +\frac{W_{2} }{g} )a  (eq. 1)

The torque:

\tau =I\alpha

Where

I = moment of inertia

α = angular acceleration

If the linear acceleration is

a=r\alpha \\\alpha =\frac{a}{r} \\I=\frac{1}{2} mr^{2} \\\tau =\frac{mra}{2}

Torque due the tension is equal:

\tau =r(T_{2} -T_{1} )

Substituting torque, mass, in equation 1, the expression respect the acceleration is:

a=\frac{g*(W_{2}-W_{1})}{W_{1}+W_{2} +\frac{W}{2} }

Where

W₁ = 75 N

W₂ = 125 N

W = 80 N

a=\frac{9.8*(125-75)}{75+125+\frac{80}{2} } =2.04m/s^{2}

The net force is:

F_{n} =F-W-T_{1} -T_{2}\\0=F-W-W_{1} (\frac{a}{g} +1)-W_{2} (1-\frac{a}{g})\\F=W+W_{1} +W_{2} +\frac{a}{g} (W_{1} -W_{2} )\\F=80+75+125+\frac{2.04}{9.8} (75-125)\\F=269.59N

4 0
2 years ago
The world record for pole vaulting is 6.15 m. If the pole vaulter's gravitational potential energy is 4942 J, what is his mass?
navik [9.2K]
The gravitational potential energy is calculated by multiplying the mass of the object to the height and the gravitational acceleration which is 9.8 m/s^2. We do as follows:

GPE = mgh
GPE = 4942
4942 = m (9.8)(6.15)
m = 82 kg 

Hope this helps.
7 0
2 years ago
Other questions:
  • A man swims at a speed of 0.4 m/s. How long will it take him to cross a pool of length 50 m?
    15·1 answer
  • The famous cliff divers of Acapulco leap from a perch 35 m above the ocean. How fast are they moving when they reach the surface
    11·1 answer
  • How is earth outer layer different from a cracked hard-boiled egg?
    11·1 answer
  • A uniform rod of mass M and length L is free to swing back and forth by pivoting a distance x from its center. It undergoes harm
    14·1 answer
  • The circuit below represents four resistors connected to a 12-volt source. What is the total current in the circuit? 4.0Ω 6.0Ω 1
    11·2 answers
  • Derive an expression for the acceleration of the car. Express your answer in terms of D and vt Determine the time at which the s
    10·1 answer
  • A radar used to detect the presence of aircraft receives a pulse that has reflected off an object 5 ✕ 10−5 s after it was transm
    5·1 answer
  • The vector product of vectors A⃗ and B⃗ has magnitude 12.0 m2 and is in the +z-direction.Vector A⃗ has magnitude 4.0 m and is in
    12·1 answer
  • 11)A 1100 kg car travels on a straight highway with a speed of 30 m/s. The driver sees a red light ahead and applies her
    5·1 answer
  • A sharpening wheel is traveling at 5 rad/s, it slows down to rest in 30 seconds while sharpening an axe. What is its angular acc
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!