answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kipiarov [429]
2 years ago
5

A toaster oven has a resistive heating element. The average rate at which it dissipates energy as thermal energy is 1.00 kW. In

the United States, emf amplitude in household circuits is Emax = 170 V and the AC oscillation rate is 60 Hz.
What is the root-mean-square current through the heating element?
Physics
1 answer:
Mandarinka [93]2 years ago
7 0

Answer:

I = 8.31 A

Explanation:

given,

Thermal Energy = 1 kW

Emf amplitude = 170 V

AC oscillation = 60 Hz

E_{rms} = \dfrac{E_{max}}{\sqrt{2}}

E_{rms} = \dfrac{170}{\sqrt{2}}

E_{rms} =120.21\ V

Rms current is calculated as

P = VI

I =\dfrac{P}{V}

I =\dfrac{1000}{120.21}  

I = 8.31 A

the root-mean-square current through the heating element is equal to I = 8.31 A

You might be interested in
You and your friend Peter are putting new shingles on a roof pitched at 20degrees . You're sitting on the very top of the roof w
Anit [1.1K]

Answer:

v₀ =3.8 m/s

Explanation:

Newton's second law of the box:

∑F = m*a Formula (1)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

a : acceleration in meters over second square (m/s²)

Known data

m=2.1 kg  mass of the box

d= 5.4m  length of the roof

θ = 20° angle θ of the roof with respect to the horizontal direction

μk= 0.51 : coefficient of kinetic friction between the box and the roof  

g = 9.8 m/s² : acceleration due to gravity

Forces acting on the box

We define the x-axis in the direction parallel to the movement of the box on the roof  and the y-axis in the direction perpendicular to it.

W: Weight of the box  : In vertical direction

N : Normal force : perpendicular to the direction the  roof

fk : Friction force: parallel to the direction to the roof

Calculated of the weight  of the box

W= m*g  =  (2.1 kg)*(9.8 m/s²)= 20.58 N

x-y weight components

Wx= Wsin θ= (20.58)*sin(20)° =7.039 N

Wy= Wcos θ =(20.58)*cos(20)°= 19.34 N

Calculated of the Normal force

∑Fy = m*ay    ay = 0

N-Wy= 0

N=Wy =19.34 N

Calculated of the Friction force:

fk=μk*N= 0.51* 19.34 N = 9.86 N

We apply the formula (1) to calculated acceleration of the block:

∑Fx = m*ax  ,  ax= a  : acceleration of the block

Wx-f = ( 2.1)*a

7.039 - 9.86  = ( 2.1)*a

-2.821 = ( 2.1)*a

a=(-2.821) /( 2.1)

a= -1.34  m/s²

Kinematics of the box

Because the box moves with uniformly accelerated movement we apply the following formula to calculate the final speed of the block :

vf²=v₀²+2*a*d Formula (2)

Where:  

d:displacement  = 5.4 m

v₀: initial speed  

vf: final speed  = 0

a : acceleration of the box = -1.34  m/s²

We replace data in the formula (2)

0²=v₀²+2*(-1.34)*(5.4)

2*(1.34)*(5.4)= v₀²

v_{o} =\sqrt{14.472}

v₀ = 3.8 m/s

7 0
2 years ago
A heavy turntable, used for rotating large objects, is a solid cylindrical wheel that can rotate about its central axle with neg
olganol [36]

Answer:

I = 113.014 kg.m^2

m = 2075.56 kg

wf = 3.942 rad/s

Explanation:

Given:

- The constant Force applied F = 300 N

- The radius of the wheel r = 0.33 m

- The angular acceleration α = 0.876 rad / s^2

Find:

(a) What is the moment of inertia of the wheel (in kg · m2)?

(b) What is the mass (in kg) of the wheel?

(c) The wheel starts from rest and the tangential force remains constant over a time period of t= 4.50 s. What is the angular speed (in rad/s) of the wheel at the end of this time period?

Solution:

- We will apply Newton's second law for the rotational motion of the disc given by:

                                   F*r = I*α

Where, I: The moment of inertia of the cylindrical wheel.

                                   I = F*r / α

                                   I = 300*0.33 / 0.876

                                  I = 113.014 kg.m^2

- Assuming the cylindrical wheel as cylindrical disc with moment inertia given as:

                                   I = 0.5*m*r^2

                                   m = 2*I / r^2

Where, m is the mass of the wheel in kg.

                                   m = 2*113.014 / 0.33^2

                                   m = 2075.56 kg

- The initial angular velocity wi = 0, after time t sec the final angular speed wf can be determined by rotational kinematics equation 1:

                                  wf = wi + α*t

                                  wf = 0 + 0.876*(4.5)

                                  wf = 3.942 rad/s

5 0
2 years ago
Table C. The Effects of a Magnet on Electric Current
Degger [83]
Magnet moving left to right
5 0
2 years ago
Suppose two astronauts on a spacewalk are floating motionless in space, 3.0 m apart. Astronaut B tosses a 15.0 kg IMAX camera to
marta [7]

Answer:

\frac{ 112.5}{15+m_{A}}=v_{f}

(we need the mass of the astronaut A)

Explanation:

We can solve this by using the conservation law of the linear momentum P. First we need to represent every mass as a particle. Also we can simplify this system of particles by considering only the astronaut A with an initial speed v_{iA} of 0 m/s and a mass m_{A} and the IMAX camera with an initial speed v_{ic} of 7.5 m/s and a mass m_{c} of 15.0 kg.

The law of conservation says that the linear momentum P (the sum of the products between all masses and its speeds) is constant in time. The equation for this is:

P_{i}=p_{ic}+p_{iA}\\P_{i}=m_{c}v_{ic}+m_{A} v_{iA}\\P_{i}=15*7.5 + m_{A}*0\\P_{i}=112.5 \frac{kg.m}{s}

By the law of conservation we know that P_{i} =P_{f}

For P_{f} (final linear momentum) we need to treat the collision as a plastic one (the two particles stick together after the encounter).

So:

P_{i} =P_{f}=112.5\\

112.5=(m_{c}+m_{A})v_{f}\\\frac{ 112.5}{m_{c}+m_{A}}=v_{f}\\\frac{ 112.5}{15+m_{A}}=v_{f}

3 0
2 years ago
a steel block has a mass of 40g.it is in the form of a cube. each edge is 1.74cm long. calculate the density
Vinil7 [7]

Answer:

d ≈ 7,6 g/cm³  

Explanation:

d = m/V = 40g/5,27cm³ ≈ 7,6 g/cm³

V = l³ = (1.74cm)³ ≈ 5,27 cm³

3 0
2 years ago
Other questions:
  • A race car exerts 19,454 n while the car travels at a constant speed of 201 mph, 91.36 m/s.what is the mass of the car?
    12·2 answers
  • Select all that apply. Greenhouse gases _____. absorb solar energy absorb carbon dioxide release carbon dioxide are released dur
    7·1 answer
  • Light has wavelength 600 nm in a vacuum. it passes into glass, which has an index of refraction of 1.5. what is the frequency of
    5·1 answer
  • The pupil of an eagle’s eye has a diameter of 6.0 mm. Two field mice are separated by 0.010 m. From a distance of 204 m, the eag
    5·1 answer
  • Assume that the cart is free to roll without friction and that the coefficient of static friction between the block and the cart
    15·2 answers
  • When a train’s velocity is 12.0 m/s east-ward, raindrops that are falling vertically with respect to the earth make traces that
    6·1 answer
  • An ore sample weighs 17.50 N in air. When the sample is suspended by a light cord and totally immersed in water, the tension in
    13·1 answer
  • Charge of uniform density (40 pC/m^2) is distributed on a spherical surface (radius = 1.0 cm), and a second concentric spherical
    14·1 answer
  • Suppose that air resistance cannot be ignored. For the position at which the person has jumped from the platform and the cord re
    8·1 answer
  • In a football game, running back is at the 10-yard line and running up the field towards the 50 yard
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!