Bohr's atomic model may have not been the accurate atomic model we have in the present, but he helped paved the way for accurate discoveries. His model is also called the planetary model. The nucleus, containing the neutrons and protons are situated at the center of the atom. The electrons are orbiting around the nucleus. The model is illustrated as shown in the attached picture.
Answer:
7.35 moles of oxygen
Explanation:
First of all, for 1 mole of H₂CO₃ we have 3 moles of oxygen (can be deduced from the chemical formula of the acid), then the moles of oxygen in 2.45 mole of the compound, which are given in the question, from the carbonic acid will be:
If in 1 mole of H₂CO₃ we have 3 moles of oxygen
The in 2.45 moles of H₂CO₃ we have X moles of oxygen
X = ( 3 × 2.45 ) / 1 = 7.35 moles of oxygen
Answer:
.997 atm
Explanation:
1. Find the combined gas law formula...
(P1V1/T1 = P2V2/T2)
2. Find our numbers...
P1= .982 atm
P2= ? (trying to find)
V1= 2 L
V2= 1.8 L
T1= 22 C = 295 K
T2= -3 C = 270 K
- Note: always use Kelvin. To find Kelving add 273 to ___C.
3. Rearrange formula to fit problem...
(P2=P1V1T2/V2T1)
4. Fill in our values...
P2= .982 atm x 2 L x 270 K / 1.8 L x 295 K
5. Do the math and your answer should be...
.997 atm
- If you need more help or still do not understand please let me know and I would be glad to help!
Answer : The percent difference between the ideal and real gas is, 4.06 %.
Explanation : Given,
Ideal pressure (true value) = 49.3 atm
Real pressure (measured value) = 47.3 atm
The formula used to calculate percent difference is :
Percent difference = 
Percent difference = 
Percent difference = 4.06 %
Therefore, the percent difference between the ideal and real gas is, 4.06 %.
If you are asking for the word for this definition it is a <span>attraction by the two nucluei</span>