Answer:
Explanation:
If Bradley examination was done and interpreted in the same facility, the radiologist code is used example- procedure code 72100- Radiologic examination, spine, lumbosacral, 2 or 3 views is reported.
if the X-ray was taken by Dr X but Dr X does not read or interpret the image but forward it to the radiologist for initial report, then a 26- modifier is used. E.g A reports by the technologist would be, procedure code 72050-Radiologic examination, spine, cervical, 2 or 3
views or 72050- TC in certain situations and the consulting radiologist would report 72050-26.
if Bradley’s x-ray were sent to an independent radiologist for interpretation, then the procedure code 76140 is used in reporting.
<h2>The hiker will go up to 850 m on the hill</h2>
Explanation:
The total energy gained by the hiker = 140 x 4186 J
This energy is consumed in the potential energy acquired , while climbing up the hill.
The potential energy P.E = mass of hiker x acceleration due to gravity x height
Thus
140 x 4186 = 69 x 10 x h
or h =
= 850 m
If the 20% of the total energy is used
the height h₀ =
= 170 m
In this system we have the conservation of angular momentum: L₁ = L₂
We can write L = m·r²·ω
Therefore, we will have:
m₁ · r₁² · ω₁ = m₂ · r₂² · ω₂
The mass stays constant, therefore it cancels out, and we can solve for ω<span>₂:
</span>ω₂ = (r₁/ r₂)² · ω<span>₁
Since we know that r</span>₁ = 4r<span>₂, we get:
</span>ω₂ = (4)² · ω<span>₁
= 16 </span>· ω<span>₁
Hence, the protostar will be rotating 16 </span><span>times faster.</span>
Answer:
acceleration = 2.4525 m/s²
Explanation:
Data: Let m1 = 3.0 Kg, m2 = 5.0 Kg, g = 9.81 m/s²
Tension in the rope = T
Sol: m2 > m1
i) for downward motion of m2:
m2 a = m2 g - T
5 a = 5 × 9.81 m/s² - T
⇒ T = 49.05 m/s² - 5 a Eqn (a)
ii) for upward motion of m1
m a = T - m1 g
3 a = T - 3 × 9.8 m/s²
⇒ T = 3 a + 29.43 m/s² Eqn (b)
Equating Eqn (a) and(b)
49.05 m/s² - 5 a = T = 3 a + 29.43 m/s²
49.05 m/s² - 29.43 m/s² = 3 a + 5 a
19.62 m/s² = 8 a
⇒ a = 2.4525 m/s²
we are given in the problem the following dimensions or specifications
B = 0.000055 T r = 0.25 m constant mu0 = 4*pi*10-7
The formula that is applicable from physics is
B = mu0*I/(2*pi*r) I = 2*B*pi*r/mu0 I = 68.75 Amperes