Initial speed, u = 15 m/s
Final speed, v = 10 m/s
Distance traveled, s = 6.0 m
The acceleration, a, is determined from
u² + 2as = v²
(15 m/s)² + 2*(a m/s²)*(6.0 m) = (10 m/s)²
225 + 12a = 100
12a = -125
a = -10.4167 m/s²
The time, t, for the velocity to change from 15 m/s to 10 m/s is given by
(10 m/s) = (15 m/s) - (10.4167 m/s²)*(t s)
10 = 15 - 10.4167t
t = 0.48 s
The average speed is
(6.0 m)/(0.48 s) = 12.5 m/s
Answer: 12.5 m/s
Answer:
a.3.20m
b.0.45cm
Explanation:
a. Equation for minima is defined as: 
Given
,
and
:
#Substitute our variable values in the minima equation to obtain
:

#draw a triangle to find the relationship between
and
.
#where 

Hence the screen is 3.20m from the split.
b. To find the closest minima for green(the fourth min will give you the smallest distance)
#Like with a above, the minima equation will be defined as:
, where
given that it's the minima with the smallest distance.

#we then use
to calculate
=4.5cm
Then from the equation subtract
from
:

Hence, the distance
is 0.45cm
The hoop is attached.
Consider that the friction force is given by:
F = μ·N
= μ·m·g·cosθ
We also know, considering the forces of the whole system, that:
F = -m·a + m·g·sinθ
and
a = (1/2)·<span>g·sinθ
Therefore:
</span>-(1/2)·m·g·sinθ + m·g·sinθ = <span>μ·m·g·cosθ
</span>(1/2)·m·g·sinθ = <span>μ·m·g·cosθ
</span>μ = (1/2)·m·g·sinθ / <span>m·g·cosθ
= </span>(1/2)·tanθ
Now, solve for θ:
θ = tan⁻¹(2·μ)
= tan⁻¹(2·0.9)
= 61°
Therefore, the maximum angle <span>you could ride down without worrying about skidding is
61°.</span>
Answer: Car brakes produces more energy then the bicycle because the cars wheels produces a much bigger force that makes the car go and to stop that force the car uses greater amount of energy that transfers to heat but in a bicycle the wheels do not turn that fast so when you press the break there is less energy that transfer to heat.
Explanation:
Complete Question
The complete question is shown on the first uploaded image
Answer:
The temperature change is 
Explanation:
From the question we are told that
The velocity field with which the bird is flying is 
The temperature of the room is 
The time considered is t = 10 \ seconds
The distance that the bird flew is x = 1 m
Given that the bird is inside the room then the temperature of the room is equal to the temperature of the bird
Generally the change in the bird temperature with time is mathematically represented as
![\frac{dT}{dt} = -0.4 \frac{dy}{dt} -0.6\frac{dz}{dt} -0.2[2 * (5-x)] [-\frac{dx}{dt} ]](https://tex.z-dn.net/?f=%5Cfrac%7BdT%7D%7Bdt%7D%20%3D%20-0.4%20%5Cfrac%7Bdy%7D%7Bdt%7D%20-0.6%5Cfrac%7Bdz%7D%7Bdt%7D%20-0.2%5B2%20%2A%20%20%285-x%29%5D%20%5B-%5Cfrac%7Bdx%7D%7Bdt%7D%20%5D)
Here the negative sign in
is because of the negative sign that is attached to x in the equation
So
![\frac{dT}{dt} = -0.4v_y -0.6v_z -0.2[2 * (5-x)][ -v_x]](https://tex.z-dn.net/?f=%5Cfrac%7BdT%7D%7Bdt%7D%20%3D%20-0.4v_y%20%20-0.6v_z%20-0.2%5B2%20%2A%20%20%285-x%29%5D%5B%20-v_x%5D)
From the given equation of velocity field



So
substituting the given values of x and t