answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tju [1.3M]
2 years ago
6

Imagine that the above hoop is a tire. the coefficient of static friction between rubber and concrete is typically at least 0.9.

what is the maximum angle θmax you could ride down without worrying about skidding? express your answer numerically, in degrees, to two significant figures.

Physics
1 answer:
Stels [109]2 years ago
5 0
The hoop is attached.

Consider that the friction force is given by:
F = μ·N
   = μ·m·g·cosθ

We also know, considering the forces of the whole system, that:
F = -m·a + m·g·sinθ
and
a = (1/2)·<span>g·sinθ

Therefore:
</span>-(1/2)·m·g·sinθ + m·g·sinθ = <span>μ·m·g·cosθ
</span>(1/2)·m·g·sinθ = <span>μ·m·g·cosθ
</span>μ = (1/2)·m·g·sinθ / <span>m·g·cosθ
   = </span>(1/2)·tanθ

Now, solve for θ:
θ = tan⁻¹(2·μ)
   = tan⁻¹(2·0.9)
   = 61°

Therefore, the maximum angle <span>you could ride down without worrying about skidding is 61°.</span>

You might be interested in
An astronaut weighs 200 lb at sea level. The radius of the earth is 3960 miles. What force is exerted on the astronaut if he is
LiRa [457]

Answer:

85.31 N

Explanation:

Given,

Radius of Earth = 3960 miles = 6373 Km

Weight of Astronaut at Sea level = 200lb = 90.72 Kg

Altitude of Astronaut above Earth = 125 miles = 201.17 km

We know that,

F = m\times g --------------------------  (1)

where,

F = force on the object due to gravity also called the weight

m = mass of the object = 200 lb = 90.71 kg

g = acceleration due to gravity = 9.8 m/s²

Also,

F = \frac{GMm}{r^{2}} -------------------(2)

where,

F = force due to gravity

G = Gravitational constant = 6.67\times 10^{-11} Nm²/kg²

M = mass of the Earth = 5.97\times 10^{24} kg

r = distance between the two objects

here, r = (6373+201.17)km = 6574170 m

From equation (1),

m\times g = 90.71\\m=\frac{90.71}{g} \\m=\frac{90.71}{9.8}\\m=9.26 kg\\

Putting value of m in equation (2)

F = \frac{6.67\times 10^{-11}\times 5.97\times 10^{24}\times 9.26}{6574170^{2}}\\

F=85.31N

6 0
2 years ago
What is the atomic number z of 73li?
aev [14]
I think thats a trick question on the periodic table there is no Z, theres Zi which is zinc but no Z
3 0
2 years ago
Read 2 more answers
Someone plans to float a small, totally absorbing sphere 0.500 m above an isotropic point source of light,so that the upward rad
mote1985 [20]

Answer:

468449163762.0812 W

Explanation:

m = Mass = \rhoV

V = Volume =\dfrac{4}{3}\pi r^3

r = Distance of sphere from isotropic point source of light = 0.5 m

R = Radius of sphere = 2 mm

\rho = Density = 19 g/cm³

c = Speed of light = 3\times 10^8\ m/s

A = Area = \pi R^2

I = Intensity = \dfrac{P}{4\pi r^2}

g = Acceleration due to gravity = 9.81 m/s²

Force due to radiation is given by

F=\dfrac{IA}{c}\\\Rightarrow F=\dfrac{\dfrac{P}{4\pi r^2}{\pi R^2}}{c}\\\Rightarrow F=\dfrac{PR^2}{4r^2c}

According to the question

F=mg\\\Rightarrow \dfrac{PR^2}{4r^2c}=\rho \dfrac{4}{3}\pi R^3g\\\Rightarrow P=\dfrac{16r^2\rho c\pi Rg}{3}\\\Rightarrow P=\dfrac{16\times 0.002\times 19000\times \pi\times 0.5^2\times 9.81\times 3\times 10^8}{3}\\\Rightarrow P=468449163762.0812\ W

The power required of the light source is 468449163762.0812 W

4 0
2 years ago
Which of the following is the BEST example of increasing the intensity of a workout? A. running one mile further than normal B.
stepladder [879]

Answer:

B. running one mile faster than normal

Explanation:

4 0
2 years ago
Read 2 more answers
A block of mass m1 = 3.5 kg moves with velocity v1 = 6.3 m/s on a frictionless surface. it collides with block of mass m2 = 1.7
maxonik [38]
First, let's find the speed v_i of the two blocks m1 and m2 sticked together after the collision.
We can use the conservation of momentum to solve this part. Initially, block 2 is stationary, so only block 1 has momentum different from zero, and it is:
p_i = m_1 v_1
After the collision, the two blocks stick together and so now they have mass m_1 +m_2 and they are moving with speed v_i:
p_f = (m_1 + m_2)v_i
For conservation of momentum
p_i=p_f
So we can write
m_1 v_1 = (m_1 +m_2)v_i
From which we find
v_i =  \frac{m_1 v_1}{m_1+m_2}= \frac{(3.5 kg)(6.3 m/s)}{3.5 kg+1.7 kg}=4.2 m/s

The two blocks enter the rough path with this velocity, then they are decelerated because of the frictional force \mu (m_1+m_2)g. The work done by the frictional force to stop the two blocks is
\mu (m_1+m_2)g  d
where d is the distance covered by the two blocks before stopping.
The initial kinetic energy of the two blocks together, just before entering the rough path, is
\frac{1}{2} (m_1+m_2)v_i^2
When the two blocks stop, all this kinetic energy is lost, because their velocity becomes zero; for the work-energy theorem, the loss in kinetic energy must be equal to the work done by the frictional force:
\frac{1}{2} (m_1+m_2)v_i^2 =\mu (m_1+m_2)g  d
From which we can find the value of the coefficient of kinetic friction:
\mu =  \frac{v_i^2}{2gd}= \frac{(4.2 m/s)^2}{2(9.81 m/s^2)(1.85 m)}=0.49
3 0
2 years ago
Other questions:
  • A compact car has a maximum acceleration of 4.0 m/s2 when it carries only the driver and has a total mass of 1200 kg . you may w
    7·2 answers
  • Consider a box sitting in the back of a pickup. The pickup accelerates to the right, and because the bed of the pickup is sticky
    8·2 answers
  • An object moving on the x axis with a constant acceleration increases its x coordinate by 82.9 m in a time of 2.51 s and has a v
    7·1 answer
  • Which combination of initial horizontal velocity, (vh) and initial vertical velocity, (vv) results in the greatest horizontal ra
    7·1 answer
  • A 2.0-kg projectile moves from its initial position to a point that is displaced 20 m horizontally and 15 m above its initial po
    9·2 answers
  • A rope connects boat A to boat B. Boat A starts from rest and accelerates to a speed of 9.5 m/s in a time t = 47 s. The mass of
    10·1 answer
  • The air in a 6.00 L tank has a pressure of 2.00 atm. What is the final pressure, in atmospheres, when the air is placed in tanks
    9·1 answer
  • A kinesin that is transporting a secretory vesicle uses approximately 80 ATP molecules/s. Each ATP provides a kinesin molecule w
    7·1 answer
  • An object is located 25.0 cm from a convex mirror. The image distance is -50.0 cm. What is the magnification?
    8·1 answer
  • A 1.00 kg ball traveling towards a soccer player at a velocity of 5.00 m/s rebounds off the soccer
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!