Answer:
Our solar system has total eight planets out of which four are inner planets and four are outer planets. The four outer planets are Jupiter, Saturn, Uranus and Neptune. The common characteristics of outer planets is that they are gaseous planets. They are larger on size than the inner rocky planets and are faraway from Sun. They have larger period of revolution around the Sun.
Uranus is a gaseous planet and lies far from Sun and hence has large period of revolution. It takes 84 Earth years to revolve around Sun. This data indicates that Uranus resides in the outer region of the Solar System.
Answer:
conserved
Explanation:
During this process the energy is conserved
Answer:
μ = 0.350
Explanation:
For the person to able to move the box, the force exerted by the person on the box must equal the force exerted by the box:

In this case, force can be calculated as a product of mass (m) by the acceleration of gravity (g) and the coefficient of static friction (μ):

Therefore, for the person to be able to push the box horizontally, the coefficient of static friction between the box and the floor should not be higher than 0.350.
Answer:
The final size is approximately equal to the initial size due to a very small relative increase of
in its size
Solution:
As per the question:
The energy of the proton beam, E = 250 GeV =
Distance covered by photon, d = 1 km = 1000 m
Mass of proton, 
The initial size of the wave packet, 
Now,
This is relativistic in nature
The rest mass energy associated with the proton is given by:


This energy of proton is 
Thus the speed of the proton, v
Now, the time taken to cover 1 km = 1000 m of the distance:
T = 
T = 
Now, in accordance to the dispersion factor;


Thus the increase in wave packet's width is relatively quite small.
Hence, we can say that:

where
= final width
Answer:
a) (95.4 i^ + 282.6 j^) N
, b) 298.27 N 71.3º and c) F' = 298.27 N θ = 251.4º
Explanation:
a) Let's use trigonometry to break down Jennifer's strength
sin θ = Fjy / Fj
cos θ = Fjx / Fj
Analyze the angle is 32º east of the north measuring from the positive side of the x-axis would be
T = 90 -32 = 58º
Fjy = Fj sin 58
Fjx = FJ cos 58
Fjx = 180 cos 58 = 95.4 N
Fjy = 180 sin 58 = 152.6 N
Andrea's force is
Fa = 130.0 j ^
We perform the summary of force on each axis
X axis
Fx = Fjx
Fx = 95.4 N
Axis y
Fy = Fjy + Fa
Fy = 152.6 + 130
Fy = 282.6 N
F = (95.4 i ^ + 282.6 j ^) N
b) Let's use the Pythagorean theorem and trigonometry
F² = Fx² + Fy²
F = √ (95.4² + 282.6²)
F = √ (88963)
F = 298.27 N
tan θ = Fy / Fx
θ = tan-1 (282.6 / 95.4)
θ = tan-1 (2,962)
θ = 71.3º
c) To avoid the movement they must apply a force of equal magnitude, but opposite direction
F' = 298.27 N
θ' = 180 + 71.3
θ = 251.4º