answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aalyn [17]
2 years ago
3

A 10 kilogram object suspended from the end of a vertically hanging spring stretches the spring 9.8 centimeters. At time t=0, th

e resulting mass-spring system is disturbed from its rest state by the force F(t)=140cos(8t). The force F(t) is expressed in Newtons and is positive in the downward direction, and time is measured in seconds.
Physics
1 answer:
Nitella [24]2 years ago
5 0

Answer:

K= 1000 N-m

Explanation:

It is assumed that we asked to find the spring constant k of the spring

We know that under equilibrium condition

weight of the object = force applied by the spring

given m =10 Kg

x= extension in the spring = 9.8 cm

mg=kx

10\times9.8=k\times9.8\times10^(-2)

K= 1000 N-m

You might be interested in
The gravitational field strength at a distance R from the center of moon is gR. The satellite is moved to a new circular orbit t
3241004551 [841]

Answer:

g'=\frac{g__R}{4}

Explanation:

Given:

  • gravitational field strength of moon at a distance R from its center, g__R
  • Distance of the satellite from the center of the moon, h=2R

<u>Now as we know that the value of gravity of any heavenly body is at height h is given as:</u>

g'=g__{R}} \times \frac{R^2}{(2R)^2}

g'=\frac{g__R}{4}

∴The gravitational field strength will become one-fourth of what it is at the surface of the moon.

6 0
2 years ago
100-ft-long horizontal pipeline transporting benzene develops a leak 43 ft from the high-pressure end. The diameter of the leak
Amanda [17]

Answer:

Explanation:

The mass flow rate of benzene from the leak in the pipeline containing benzene is:

Q_m=AC_o\sqrt{2\rho g_cP_g}

Here, Q_m is the mass flow rate through the leak of the pipeline. A is the area of the hole, C_o is the discharge rate, \rho is the fluid density, g_c is the gravitational constant and P_g is the constant gauge pressure within the process unit.

The diametre of the leak (d) is 0.1 in. Convert from in to ft.

d=(0.1 in)(\frac{1ft}{12in})\\=8.33\times 10^{-3}ft

Calculate the area (A) of the hole. The area of the hole is.

A=\frac{\pi d^2}{4}

Substitute 3.14 for \pi and 8.33\times 10^{-3}ft for d and calculate A.

A=\frac{\pi d^2}{4}\\\\\frac{(3.14)(8.33\times 10^{-3})^2}{4}\\\\5.45\times 10^{-5}ft^2

The specific gravity of benzene is 0.8794. Specific gravity is the ratio of th density of a substance to the density of a reference substance.

Specific gravity of benzene = density of benzenee/denity of reference substance

Rewrite the expression in terms of density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

Take the reference substance as water. Density of water is 62.4\frac{Ib_m}{ft^3}. Calculate density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

=(0.8794)(62.4\frac{Ib_m}{ft^3})\\\\54.9\frac{Ib_m}{ft^3}

Calculate the pressure at the point of leak. The pressure is the average of the pressure of the high and low pressure end. Write the expression to calculate the average pressure.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

Calculate the distance from the downstream pressure end. The distance from upstream pressure end is 43 ft. Total of the pipe is 100 ft.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

The distance from upstream pressure end is 43 ft. Total length of the pipe is 100 ft. Substitute the values in the equation.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

= 100ft - 43ft = 57 ft

Substitute 50 psig for upstream, 43 ft fr distance from the upstream pressure end, 40 psig for downstream pressure, 57 ft for distance from the downstream pressure end, and 100 ft for the total length of the horizontal pipeline and calculate P_g.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

=\frac{(50psig\times 43ft)+(40psig \times 57ft)}{100ft}\\\\=44.3psig

Convert the pressure from psig to Ib_f/ft^2

P_g=(44.3psig)(\frac{1\frac{Ib_f}{ft^2}}{1psig})(144\frac{in^2}{ft^2})\\\\=6,379.2\frac{Ib_f}{ft^2}

The leak is like a sharp orifice. Take the value of the discharge coefficient as 0.61.

Substitute 5.45\times 10^{-5}ft^2 for A. 0.61 for C_o, 54.9\frac{Ib_m}{ft^3} for \rho, 32.17\frac{ft.Ib_m}{Ib_f.s^2} for g_c, and 6,379.2\frac{Ib_f}{ft^2} for P_g and calculate Q_m

Q_m=AC_o\sqrt{2\rho g_cP_g}\\\\=(5.45\times 10^{-5}ft^2)(0.61)\sqrt{2(54.9\frac{Ib_m}{ft^3})(32.17\frac{ft.Ib_m}{Ib_f.s^2})(6,379.2\frac{Ib_f}{ft^2})}\\\\(3.3245\times 10^{-5}ft^2)\sqrt{22,533,031.21\frac{Ib^2_m}{ft^4.s^2}}\\\\=0.158\frac{Ib_m}{s}

The mass flow rate of benzene through the leak in the pipeline is 0.158\frac{Ib_m}{s}

8 0
3 years ago
A catcher stops a 0.15-kg ball traveling at 40 m/s in a distance of 20 cm. what is the magnitude of the average force that the b
iren2701 [21]

The magnitude of the average force that the ball exerts against his glove is 600 N

\texttt{ }

<h3>Further explanation</h3>

Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

\boxed {F = ma }

F = Force ( Newton )

m = Object's Mass ( kg )

a = Acceleration ( m )

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of ball = m = 0.15 kg

initial speed of ball = u = 40 m/s

final speed of ball = v = 0 m/s

distance = d = 20 cm = 0.2 m

<u>Asked:</u>

average force = F = ?

<u>Solution:</u>

<em>We will use </em><em>Newton's Law of Motion</em><em> to solve this problem as follows:</em>

F = m a

F = m (\frac { u^2 - v^2 } { 2d } )

F = 0.15 \times \frac { 40^2 - 0^2 } { 2 \times 0.2 }

F = 0.15 \times \frac { 1600 } { 0.4 }

F = 0.15 \times 4000

\boxed {F = 600 \texttt{ N}}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441
  • Newton's Law of Motion: brainly.com/question/10431582
  • Example of Newton's Law: brainly.com/question/498822

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Dynamics

8 0
2 years ago
Read 2 more answers
The total energy of a 0.050 kg object travelling at 0.70 c is:
finlep [7]
What is the unit c denotes here
3 0
2 years ago
Read 2 more answers
Two objects have masses m and 5m, respectively. They both are placed side by side on a frictionless inclined plane and allowed t
poizon [28]

Answer:

(E) The two objects reach the bottom of the incline at the same time.

Explanation:

Given;

first object with mass, m

second object with mass, 5m

The acceleration of gravity for both object is the same = 9.8 m/s²

Since both objects have the same acceleration of gravity, and no external force due friction (frictionless inclined plane), they will reach bottom of the inclined at the time.

Thus, the acceleration due to gravity is constant for all objects regardless of their masses.

Therefore, the correct option is E;

(E) The two objects reach the bottom of the incline at the same time.

5 0
2 years ago
Other questions:
  • Shelley gives her little sister a 5-meter head start in a bike race. The race ends 15 meters east from where Shelley started. If
    13·2 answers
  • While camping in Denali National Park in Alaska, a wise camper hangs his pack of food from a rope tied between two trees, to kee
    9·1 answer
  • Light has wavelength 600 nm in a vacuum. it passes into glass, which has an index of refraction of 1.5. what is the frequency of
    5·1 answer
  • A horizontal jet of water is made to hit a vertical wall with a negligible rebound. If the speed of water from the jet is 'v', t
    13·1 answer
  • A 5.0-g marble is released from rest in the deep end of a swimming pool. An underwater video reveals that its terminal speed in
    11·1 answer
  • A crate is lifted vertically 1.5 m and then held at rest. The crate has weight 100 N (i.e., it is reese (enr647) – HS OnRamps 04
    5·2 answers
  • On a horizontal frictionless floor, a worker of weight 0.900 kN pushes horizontally with a force of 0.200 kN on a box weighing 1
    7·1 answer
  • Calculate the Engineering Ultimate Tensile Strength and the maximum load in tension testing of an annealed copper specimen with
    5·1 answer
  • A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R. There is a section of the track with
    7·1 answer
  • Which of the following has a particles in most irregular pattern​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!