answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
I am Lyosha [343]
2 years ago
15

A shuffleboard disk is accelerated to a speed of 5.8 m/s and released. If the coefficient of kinetic friction between the disk a

nd the concrete court is 0.31, how far does the disk go before it comes to a stop?
Physics
1 answer:
MatroZZZ [7]2 years ago
3 0

Answer:

5.53 m

Explanation:

v_{o} = initial speed of  shuffleboard disk = 5.8 ms^{-1}

v_{f} = final speed of  shuffleboard disk = 0 ms^{-1}

\mu = Coefficient of kinetic friction between the disk and concrete court = 0.31

acceleration due to friction is given as

a = - \mu g\\a = - (0.31) (9.8)\\a = - 3.04 ms^{-2}

d = distance traveled by disk before it stops

using the kinematics equation that fits the above the data, we have

v_{f}^{2} = v_{o}^{2} + 2 a d\\0^{2} = 5.8^{2} + 2 (- 3.04) d\\d = 5.53 m

You might be interested in
Pions have a half-life of 1.8 x 10^-8 s. A pion beam leaves an accelerator at a speed of 0.8c. What is the expected distance ove
Nuetrik [128]

Answer:

the expected distance is 4.32 m

Explanation:

given data

half life time = 1.8 × 10^{-8} s

speed = 0.8 c = 0.8 × 3 × 10^{8}

to find out

expected distance over

solution

we know c is speed of light in air is 3 × 10^{8} m/s

we calculate expected distance by given formula that is

expected distance = half life time × speed   .........1

put here all these value

expected distance = half life time × speed

expected distance = 1.8 × 10^{-8} ×  0.8 × 3 × 10^{8}

expected distance = 4.32

so the expected distance is 4.32 m

5 0
2 years ago
Physics in motion unit 6a the nature of waves
mylen [45]
What’s the question?
7 0
2 years ago
an elastic cord 61 cm long when a weight of 75N hangs from it, but 85cm when a weight of 210N hangs from it. what is the spring
pishuonlain [190]

Answer:

560 N/m

Explanation:

F = kx

75 N = k (0.61 m − L)

210 N = k (0.85 m − L)

Divide the equations:

2.8 = (0.85 − L) / (0.61 − L)

2.8 (0.61 − L) = 0.85 − L

1.708 − 2.8L = 0.85 − L

0.858 = 1.8L

L = 0.477

Plug into either equation and find k.

75 = k (0.61 − 0.477)

k = 562.5

Rounded to two significant figures, k = 560 N/m.

3 0
2 years ago
A force of 6.0 N pulls a box 0.40 m along a frictionless plane that is inclined at 36°. What work is being done by the pulling f
lys-0071 [83]

Answer:

Expression of work done is

W = Fd cos\theta

Work done to move the sled is given as 1.94 J

Explanation:

As we know that the formula of work done is given as

W = Fd cos\theta

here we know that

F = 6 N

d = 0.4 m

\theta = 36 degree

so we will have

W = 6 \times 0.4 cos36

W = 1.94 J

7 0
2 years ago
Two stunt drivers drive directly toward each other. At time t=0 the two cars are a distance D apart, car 1 is at rest, and car 2
lesantik [10]

Answer: Hello there!

We know this:

The distance between the cars at t= 0 is D.

car 2 has an initial velocity of v0 and no acceleration.

car 1 has no initial velocity and a acceleration of ax that starts at  t = 0

then we could obtain the acceleration of the car 1 by integrating the acceleration over the time; this is v(t) = ax*t where there is not a constant of integration because the car 1 has no initial velocity.

Because the cars are moving against each other, we want to se at what time t they meet, this is equivalent to see:  

position of car 1 + position of car 2 = D

and in this way we could ignore constants of integration :D

for the position of each car we integrate again:  

P1(t) = (1/2)ax*t^2 and P2(t) = v0t

v0t + (1/2)ax*t^2 = D

v0t + (1/2)ax*t^2  - D = 0

now we can solve it for t using the Bhaskara equation.

t = \frac{-v0 +\sqrt{v0^{2} + 4*(1/2)ax*D } }{2(1/2)ax} =\frac{-v0 +\sqrt{v0^{2} + 2ax*D } }{ax}

that we cant solve witout knowing the values for v0, D and ax. But you could replace them in that equation and obtain the time, where you must remember that you need to choose the positive solution (because this quadratic equation has two solutions).

Now we want to know the velocity of car 1 just before the impact, this can be calculated by valuating the time in the as the time that we just found in the velocity equation for the car 1, this is:

v(\frac{-v0 +\sqrt{v0^{2} + 2ax*D } }{ax}) = ax*\frac{-v0 +\sqrt{v0^{2} + 2ax*D } }{ax} = {-v0 +\sqrt{v0^{2} + 2ax*D }

where again, you need to replace the values of v0, D and ax.

7 0
2 years ago
Other questions:
  • a student drops an object from the top of a building which is 19.6 m high. How long does it take the object to fall to the groun
    13·2 answers
  • A 1.0 kg object moving at 4.5 m/s has a wavelength of:
    12·1 answer
  • what shall be the effect on the least count of spherometer if number of divisions on its circular scale be doubled?
    12·1 answer
  • A doctor travels to the east from city a to city b 75 km in 1.0h and returns back in another hour
    10·1 answer
  • An object starts from rest and slides with negligible friction down an air track tipped at an angle theta from the horizontal. A
    6·1 answer
  • A calorimeter has a heat capacity of 1265 J/oC. A reaction causes the temperature of the calorimeter to change from 22.34oC to 2
    14·2 answers
  • According to a rule-of-thumb. every five seconds between a lightning flash and the following thunder gives the distance to the f
    10·1 answer
  • A 4.0 kg block is resting on a rough horizontal table. The coefficient of static friction us is 0.60. The static friction betwee
    7·1 answer
  • A balloon and a mass are attached to a rod that is pivoted at P.
    10·1 answer
  • a block weighing (Fg) 50 N is resting on a steel table (us = 0.74). The minimum force to start this block moving is what N
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!