answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
likoan [24]
2 years ago
13

a student drops an object from the top of a building which is 19.6 m high. How long does it take the object to fall to the groun

d?
Physics
2 answers:
zubka84 [21]2 years ago
8 0

Here's a formula that's simple and useful, and if you're really in
high school physics, I'd be surprised if you haven't see it before. 
This one is so simple and useful that I'd suggest memorizing it,
so it's always in your toolbox.

This formula tells how far an object travels in how much time,
when it's accelerating:

               Distance = (1/2 acceleration) x (Time²).

                           D = 1/2 A T²

For your student who dropped an object out of the window,

     Distance = 19.6 m
     Acceleration = gravity = 9.8 m/s²

                                              D = 1/2 G T²

                                          19.6 =   4.9   T²

Divide each side by 4.9 :       4  =           T²

Square root each side:           2  =          T

When an object is dropped in Earth gravity,
it takes  2  seconds to fall the first 19.6 meters.

Crazy boy [7]2 years ago
5 0
Earth's gravity is 9.807 m/s²

Using this we can divide 19.6/9.807 to get 1.999 seconds or two if you round.
You might be interested in
when you drop a pebble from height h, it reaches the ground with kinetic energy k if there is no air resistance. from what heigh
marysya [2.9K]

Answer:

From the initial height h

Explanation:

When a material or substance is drop from a height h, it possesses potential energy, immediately it is dropped from that height, the potential energy is gradually converted to kinetic energy, it gets to a point where the potential energy equals the kinetic energy, as the material touches the ground, all potential energy has been converted to kinetic energy already

6 0
1 year ago
A bug starts at point A, crawls 8.0 cm east, then 5.0 cm south, 3.0 west, and 4.0 cm north to point B.
Sholpan [36]

Answer:

5cm east& 1cm west from A

Explanation:

https://brainly.ph/question/2753392

7 0
1 year ago
Suppose you are designing an amplifier and loudspeaker system to use at a rock concert. You want to make it as loud as possible.
OverLord2011 [107]

Answer is given below

Explanation:

  • Audio power amplifiers are found in all types of sound systems, including sound reinforcement, public address and home audio systems, as well as musical instrument amplifiers such as guitar amplifiers.
  • This is the last electronic step in the general audio playback series before sending the signal to the loudspeaker.  So when we want maximum volume or loud sound, we have to get it with maximum output and high input and low output impedance
4 0
2 years ago
If the radius of the sun is 7.001×105 km, what is the average density of the sun in units of grams per cubic centimeter? The vol
xenn [34]

Answer:

Average density of Sun is 1.3927 \frac{g}{cm}.

Given:

Radius of Sun = 7.001 ×10^{5} km = 7.001 ×10^{10} cm

Mass of Sun = 2 × 10^{30} kg = 2 × 10^{33} g

To find:

Average density of Sun = ?

Formula used:

Density of Sun = \frac{Mass of Sun}{Volume of Sun}

Solution:

Density of Sun is given by,

Density of Sun = \frac{Mass of Sun}{Volume of Sun}

Volume of Sun = \frac{4}{3} \pi r^{3}

Volume of Sun = \frac{4}{3} \times 3.14 \times [7.001 \times 10^{10}]^{3}

Volume of Sun = 1.436 × 10^{33} cm^{3}

Density of Sun = \frac{ 2\times 10^{33} }{1.436 \times 10^{33} }

Density of Sun = 1.3927 \frac{g}{cm}

Thus, Average density of Sun is 1.3927 \frac{g}{cm}.

4 0
1 year ago
A projectile has an initial horizontal velocity of 15 meters per second and an initial vertical velocity of 25 meters per second
Artyom0805 [142]

Answer:

75 m

Explanation:

The horizontal motion of the projectile is a uniform motion with constant speed, since there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal acceleration is zero.

The horizontal component of the velocity of the projectile is

v_x = 15 m/s

and it is constant during the motion;

the total time of flight is

t = 5 s

Therefore, we can apply the formula of the uniform motion to find the horizontal displacement of the projectile:

d= v_x t =(15 m/s)(5 s)=75 m

5 0
2 years ago
Other questions:
  • To determin the density of an empty plastic jug what would you measure
    5·1 answer
  • What is the minimum speed with which he’d need to run off the edge of the cliff to make it safely to the far side of the river?
    5·2 answers
  • A 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall. the mass is pull
    12·2 answers
  • Heat engines were first envisioned and built during the industrial revolution. Explain the thermodynamics of a heat engine comme
    6·2 answers
  • Many industries are powered via distant power stations. Calculate the current flowing through a 7,300m long 10. copper power lin
    15·1 answer
  • Each shot of the laser gun most favored by Rosa the Closer, the intrepid vigilante of the lawless 22nd century, is powered by th
    11·1 answer
  • Cell phone conversations are transmitted by high-frequency radio waves. Suppose the signal has wavelength 36.5 cm while travelin
    9·1 answer
  • What is the final position of the object if its initial position is x = 0.40 m and the work done on it is equal to 0.21 J? What
    14·1 answer
  • To prevent contamination laundered linens should be kept
    11·1 answer
  • Emir is standing in a treehouse and looking down at a swingset in the yard next door. The angle of depression from Emir's eyelin
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!