Answer
The answer and procedures of the exercise are attached in the following archives.
Step-by-step explanation:
You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.
Answer:
f=15.5 Hz
Explanation:
Let's determine the internal resistance:

ρ = 1.68*10^-8 Ω m


Ω
Since the bulb is rated at 12.0 V and 25.0 W,
Current

Therefore, voltage drop inside generator =

Actual EMF required is

Note that this is an RMS value.
The peak voltage is

For a generator, by Faraday's Law,

*ω
ω
f=ω/(2π)=
f=144.5 rad/s/(2π)
f=23.001 Hz
<span>As a sound source gets closer, both the volume and the pitch of the sound increased. Then, as the sound source passed by you, both the volume and the pitch of the sound decreased.
Hope this helps</span>
Answer:
The answer to your question is:
Explanation:
Data
Duane Albert
d = 5 m ; v = 3 m/s v = 4.2 m/s
a) b)
Duane's Albert's
d = 5 + (3)t d = 4.2t
d = 5 + 3t
c) 5 + 3t = 4.2t
4.2t - 3t = 5
1.2t = 5
t = 4.17 s
d)
Duane's
d= 5 + 3(4.17)
d = 17.51 m
Alberts
d = 4.2(4.17)
d = 17.51 m
Answer:
Radius of the solenoid is 0.93 meters.
Explanation:
It is given that,
The magnetic field strength within the solenoid is given by the equation,
, t is time in seconds

The induced electric field outside the solenoid is 1.1 V/m at a distance of 2.0 m from the axis of the solenoid, x = 2 m
The electric field due to changing magnetic field is given by :

x is the distance from the axis of the solenoid
, r is the radius of the solenoid


r = 0.93 meters
So, the radius of the solenoid is 0.93 meters. Hence, this is the required solution.