Answer:
Magnetic force, F = 0.24 N
Explanation:
It is given that,
Current flowing in the wire, I = 4 A
Length of the wire, L = 20 cm = 0.2 m
Magnetic field, B = 0.6 T
Angle between force and the magnetic field, θ = 30°. The magnetic force is given by :


F = 0.24 N
So, the force on the wire at an angle of 30° with respect to the field is 0.24 N. Hence, this is the required solution.
Answer:
14.4 m/s
Explanation:
mass of Anna (Ma) = 68 kg
speed of Anna (Va) = 17 m/s
mass of SandraDay (Ms) = 76 kg
speed of SandraDay (Vs) = 12 m/s
We can find their speed (V) immediately after collision from the conservation of momentum where
(Ma x Va) + (Ms + Vs) = (Ma + Ms) x V
where V = speed immediately after collision
(68 x 17) + (76 + 12) = (68 + 76) x V
2068 = 144 V
V = 2068 / 144 = 14.4 m/s
Answer: If the net force acting on an object doubles, its acceleration is doubled. If the mass is doubled, then acceleration will be halved. If both the net force and the mass are doubled, the acceleration will be unchanged.
Explanation:
The equation for Hall voltage Vh is:
Vh=v*B*w, where v is the velocity of the strip, B is the magnitude of the magnetic field, and w is the width of the strip.
v=25 cm/s = 0.25 m/s
B=5.6 T
w= 1.2 mm = 0.0012 m
We input the numbers into the equation and get:
Vh= 0.25*5.6*0.0012 = 0.00168 V
The maximum Hall voltage is Vh= 0.00168 V.
Answer:
Energy resources can be measured. They will include the fossil fuels, geothermal and hydroelectric potential, and increasingly the renewable resources. When the US list is compared to the World it is considered energy Rich. When Japan's list is compared to the world standard it considered energy poor.
A changing technology like nuclear fusion could substantially change the assessment.
Japan does not have any substantial, oil, coal, gas, deposits, while the US does.
Explanation: