In this kind of exercises, you should use the "ideal gas" rules: PV = nRT
P should be in Pascal:
445mmHg = 59328Pa
1225mmHg = 163319Pa
V should be in cubic meter:
16L = 0.016 m3
R =

= constant

=

==> P1 * V1 = P2 * V2
V2 =

=
V2 = 0.00581 m3 = 5.81 L
Answer:
the reducing flame also called the carburizing flame.
Explanation:
because it gets the oxides of the unknown salts
<h2>
Hello!</h2>
The answer is:
When the pressure that a gas exerts on a sealed container changes from
22.5 psi to 19.86 psi, the temperature changes from 110°C to
65.9°C.
<h2>
Why?</h2>
To calculate which is the last pressure, we need to use Gay-Lussac's law.
The Gay-Lussac's Law states that when the volume is kept constant, the temperature (absolute temperature) and the pressure are proportional.
The Gay-Lussac's equation states that:

We are given the following information:
We need to remember that since the temperatures are given in Celsius degrees, we need to convert it to Kelvin (absolute temperature) before use the equation, so:

Now, calculating we have:

Hence, the final pressure is equal to 19.86 Psi.
Have a nice day!
Answer:
MCl₂
Explanation:
The formula for boiling point elevation can be used to find x. The "complete dissociation" means there will be an ion of M and x ions of Cl in the solution. The number of moles of solute will be 30.2 grams divided by the molecular weight of MClx, where x is the variable we're trying to find.

Then the formula for the salt is MCl₂.
A compound consists of 2 or more elements that are combined chemically in such a way that the elements themselves can no longer be identified by their individual properties. So the Answer is A.