Answer:
C a B r 2 ( a q ) + N a 2 S O 4 ( a q ) ⟶ 2 N a B r ( a q ) + C a S O 4 ( s )
Explanation:
A precipitation reaction is a type of displacement reaction which a precipitate forms. The precipitate would be in the solid state, different from the other products so it can be separated or removed from the reaction.
C a 2 + ( a q ) + S O 4 2 − ( a q ) ⟶ C a S O 4 ( s )
This is wrong because C a S O 4 is the the only product formed.
C a B r 2 ( a q ) + N a 2 S O 4 ( a q ) ⟶ 2 N a B r ( a q ) + C a S O 4 ( s )
This is the correct option, The precipitate is C a S O 4.
C a 2 + ( a q ) + 2 B r − ( a q ) + 2 N a + ( a q ) + S O 4 2 − ( a q ) ⟶ 2 N a + ( a q ) + 2 B r − ( a q ) + C a S O 4 ( s )
This is the ionic equation for the precipitation reaction
Answer: D. They are made up of hard spheres that are in random motion.
Explanation:
A gas is a <u>state of aggregation of matter</u> in which, under certain conditions of temperature and pressure, <u>its molecules interact weakly with each other, without forming molecular bonds</u>, adopting the shape and volume of the container that contains them and tending to separate everything possible because of its <u>high concentration of kinetic energy</u>.
The molecules of a gas are practically <u>free</u> and have the ability to be distributed throughout the space in which they are contained because <u>the gravitational forces and attraction between them are practically negligible</u> compared to the speed at which they move. .
Therefore, gas molecules do not travel specific trajectories or vibrate in a stationary position, instead <u>they move quickly and randomly through the entire space of the container that contains them.</u>
Answer:
Maintaining a high starting-material concentration can render this reaction favorable.
Explanation:
A reaction is <em>favorable</em> when <em>ΔG < 0</em> (<em>exergonic</em>). ΔG depends on the temperature and on the reaction of reactants and products as established in the following expression:
ΔG = ΔG° + R.T.lnQ
where,
ΔG° is the standard Gibbs free energy
R is the ideal gas constant
T is the absolute temperature
Q is the reaction quotient
To make ΔG < 0 when ΔG° > 0 we need to make the term R.T.lnQ < 0. Since T is always positive we need lnQ to be negative, what happens when Q < 1. Q < 1 implies the concentration of reactants being greater than the concentration of products, that is, maintaining a high starting-material concentration will make Q < 1.
Answer:
Zero
Explanation:
FrBr is an ionic compound
.
Fr is in Group 1. Br is in Group 17.
The charges on the ions are +1 and -1, respectively.
The compound consists of Fr⁺Br⁻ ions.
However, there are equal numbers of + and - charges, so
The overall charge of the compound is zero.
<span>336*280 i believe... i hope this helps
</span>