(a) In this section, give your answers to three decimal places.
(i)
Calculate the mass of carbon present in 0.352 g of CO
2
.
Use this value to calculate the amount, in moles, of carbon atoms present in 0.240 g
of
A
.
(ii)
Calculate the mass of hydrogen present in 0.144 g of H
2
O.
Use this value to calculate the amount, in moles, of hydrogen atoms present in 0.240 g
of
A
.
(iii)
Use your answers to calculate the mass of oxygen present in 0.240 g of
A
Use this value to calculate the amount, in moles, of oxygen atoms present in 0.240 g
of
A
(b)
Use your answers to
(a)
to calculate the empirical formula of
A
thank you
hope it helpsss
Explanation:
The reaction equation will be as follows.

Hence, moles of Na = moles of electron used
Therefore, calculate the number of moles of sodium as follows.
No. of moles = 
=
(as 1 kg = 1000 g)
= 195.65 mol
As, Q =
where F = Faraday's constant
= 
=
mol C
Relation between electrical energy and Q is as follows.
E = 
Hence, putting the given values into the above formula and then calculate the value of electricity as follows.
E = 
= 
= 
As 1 J =
kWh
Hence,
kWh
= 3.39 kWh
Thus, we can conclude that 3.39 kilowatt-hours of electricity is required in the given situation.
Answer : The volume of the cube submerged in the liquid is, 29.8 mL
Explanation :
First we have to determine the mass of ice.
Formula used :

Given:
Density of ice = 
Volume of ice = 45.0 mL


The cube will float when 40.5 g of liquid is displaced.
Now we have to determine the volume of the cube is submerged in the liquid.



Thus, the volume of the cube submerged in the liquid is, 29.8 mL
Given reaction represents dissociation of bromine gas to form bromine atoms
Br2(g) ↔ 2Br(g)
The enthalpy of the above reaction is given as:
ΔH = ∑n(products)Δ
- ∑n(reactants)Δ
where n = number of moles
Δ
= enthalpy of formation
ΔH = [2*ΔH(Br(g)) - ΔH(Br2(g))] = 2*111.9 - 30.9 = 192.9 kJ/mol
Thus, enthalpy of dissociation is the bond energy of Br-Br = 192.9 kJ/mol
Answer : The grams of
consumed is, 89.6 grams.
Solution : Given,
Mass of
= 265 g
Molar mass of
= 80 g/mole
Molar mass of
= 28 g/mole
First we have to calculate the moles of
.

The given balanced reaction is,

from the reaction, we conclude that
As, 1 mole of
produces from 1 mole of 
So, 3.2 moles of
produces from 3.2 moles of 
Now we have to calculate the mass of 


Therefore, the grams of
consumed is, 89.6 grams.