Answer:
1.4 *10^6 N/C
Explanation:
The electric field caused by a charge at a certain point is given by the equation:

where k is the Coulomb constant equal to 8.99 *10^9 Nm^2/C^2, q the charge of the particle in coulombs, r is the distance from the point to the charge in meters.
is the unitary vector that goes from the charge to the point. This vector will give us the direction of the Electric Field vector.
The unitary vector of the +5.0-μC charge will go to the right (+i), as the point is to the right of the charge. Then, the electric field caused by the charge will be:

The unitary vector of the -4.0-μC charge will go to the left (-i), as the point is to the left of the charge. Then, the electric field caused by the charge will be:

The electric field at the 30 cm mark will be the addition of both electric field:

To solve this problem we will apply the concepts related to energy conservation. Here we will use the conservation between the potential gravitational energy and the kinetic energy to determine the velocity of this escape. The gravitational potential energy can be expressed as,

The kinetic energy can be written as,

Where,
Gravitational Universal Constant
Mass of Earth
Height
Radius of Earth
From the conservation of energy:

Rearranging to find the velocity,
Escape velocity at a certain height from the earth
If the height of the satellite from the earth is h, then the total distance would be the radius of the earth and the eight,


Replacing the values we have that


Therefore the escape velocity is 3.6km/s
Answer:
A) The free body diagrams for both the load of bricks and the counterweight are attached.
B) a = 2.96 m/s²
Explanation:
A)
The free body diagrams for both the load of bricks and the counterweight are attached.
B)
The acceleration of upward acceleration of the load of bricks is given by the following formula:
a = g(m₁ - m₂)/(m₁ + m₂)
where,
a = upward acceleration of load of bricks = ?
g = 9.8 m/s²
m₁ = heavier mass = mass of counterweight = 28 kg
m₂ = lighter mass = mass of load of bricks = 15 kg
Therefore, using these values in equation, we get:
a = (9.8 m/s²)(28 kg - 15 kg)/(28 kg + 15 kg)
<u>a = 2.96 m/s²</u>
<em>If the distance between the two objects is the same, then;</em>
Both the magnet and the coil moving toward each other at 10 cm/s each
A reversed polarity magnet moving away from the coil at 20 cm/s
<u>Calculate current that produces a magnetic field, and use the right hand rule 2, to determine the direction of current or the direction of magnetic field loops. </u>
Answer:
44J
Explanation:
Given parameters:
Mass of rock = 0.22kg
Initial velocity = 20m/s
Distance moved = 10m
Unknown:
Initial kinetic energy of the rock = ?
Solution:
To solve this problem, we need to understand that kinetic energy is the energy due to the motion of a body.
It is mathematically expressed as;
Kinetic energy =
m v²
m is the mass
v is the velocity
Kinetic energy =
x 0.22 x 20² = 44J