Answer:
The correct answer is option A.
Explanation:
Volumetric flask : A glass ware with round lower body with flat bottom and with thin cylindrical neck along with mark which indicates the specific volume filled to that mark.It is used in preparation of standard solution of compound with desired concentration with fixed volume.
Erlenmeyer flask
: is a flask with conical shape with flat bottom used in titration experiments to carry out reaction with fixed volume of solution.
Test tube
: Small cylindrical tube with rounded bottom used to observe reaction in between reactant taken in small amount.
Graduated beaker
: Laboratory glassware used measure larger volumes of solution or to mix or stir solutions and liquids.
Graduated cylinder : Laboratory thin cylindrical glassware with accurate marking of volume used to measure an accurate volume of solutions or liquids required in an experiment.
<em><u>Volumetric flask</u></em> is the best piece of laboratory glassware for preparing 500.0 mL of an aqueous solution of a solid
Answer:
Calculate the mass percent of a potassium nitrate solution when 15.0 g KNO3 is dissolved in 250 g
of water.
2. Calculate the mass percent of a sodium nitrate solution when 150.0 g NaNO3 is dissolved in 500 mL
of water. Hint: 1 mL water = 1 g water
3. Calculate the weight of table salt needed to make 670 grams of a 4.00% solution.
4. How many grams of solute are in 2,200 grams of a 7.00% solution?
5. How many grams of sodium chloride are needed to prepare 6,000 grams of a 20% solution?
Mass Percent = Grams of Solute
Grams of Solution X 100%
100%
Grams of Solute = Grams of Solution X Mass Percent
= 26.8 grams NaCl
= 670 grams X 4.00%
100%
100%
Grams of Solute = Grams of Solution X Mass Percent
= 154 grams solute
= 2,200 grams X 7.00%
100%
100%
Grams of Solute = Grams of Solution X Mass Percent
= 1,200 grams NaCl
= 6,000 grams X 20.0%
100%
Explanation:
The molar mass of NH3
N = 14
H3 = 3
total = 17
The fraction of nitrogen is 14/17
So 14/17 x 125 = 102.94g
Answer: For transverse waves, the waves move in perpendicular direction to the source of vibration.
For longitudinal waves, the waves move in parallel direction to the source of vibration .
They are similar within the sense that energy is transferred within the kind of waves.
Explanation:
Answer:
maximum possible volume flow rate = V = 0.5m^3/s
Explanation:
Given power consumed = 3.5kW
pressure difference ( delta -P) = 7kPa
let maximum possible volume flow rate = V
The rate of flow of work = W = V x Delta -P
hence, V = W/delta P
V = 3.5/7
V = 0.5m^3/s