Answer:
im pretty sure its A or C im leaning more toward A tho
Explanation:
Answer:
Explanation:
We have in this question the equilibrium
X ( g ) + Y ( g ) ⇆ Z ( g )
With the equilibrium contant Kp = pZ/(pX x pY)
The moment we change the concentration of Y, we are changing effectively the partial pressure of Y since pressure and concentration are directly proportional
pV = nRT ⇒ p = nRT/V and n/V is molarity.
Therefore we can calculate the reaction quotient Q
Qp = pZ/(pX x pY) = 1/ 1 x 0.5 atm = 2
Since Qp is greater than Kp the system proceeds from right to left.
We could also arrive to the same conclusion by applying LeChatelier´s principle which states that any disturbance in the equilibrium, the system will react in such a way to counteract the change to restore the equilibrium. Therefore, by having reduced the pressure of Y the system will react favoring the reactants side increasing some of the y pressure until restoring the equilibrium Kp = 1.
Answer:
-10778.95 J heat must be removed in order to form the ice at 15 °C.
Explanation:
Given data:
mass of steam = 25 g
Initial temperature = 118 °C
Final temperature = 15 °C
Heat released = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 15 °C - 118 °C
ΔT = -103 °C
now we will put the values in formula
q = m . c . ΔT
q = 25 g × 4.186 J/g.°C × -103 °C
q = -10778.95 J
so, -10778.95 J heat must be removed in order to form the ice at 15 °C.
Answer : The mass of 7.0 m chain is, 15.12 kg
Explanation :
As we are given that,
The weight of the chain per unit length = 2.16 kg/m
Now we have to determine the mass of chain for 7.0 m length.
As, the mass of 1 m length of chain = 2.16 kg
So, the mass of 7.0 m length of chain = 
= 15.12 kg
Therefore, the mass of 7.0 m chain is, 15.12 kg