Energy can change form, but the total amount of energy stays the same.
Answer:
v_f = 17.4 m / s
Explanation:
For this exercise we can use conservation of energy
starting point. On the hill when running out of gas
Em₀ = K + U = ½ m v₀² + m g y₁
final point. Arriving at the gas station
Em_f = K + U = ½ m v_f ² + m g y₂
energy is conserved
Em₀ = Em_f
½ m v₀ ² + m g y₁ = ½ m v_f ² + m g y₂
v_f ² = v₀² + 2g (y₁ -y₂)
we calculate
v_f ² = 20² + 2 9.8 (10 -15)
v_f = √302
v_f = 17.4 m / s
Through the work of Max Planck<span>, Einstein, </span>Louis de Broglie<span>, </span>Arthur Compton<span>, </span>Niels Bohr<span>, current scientific theory holds that all particles also have a wave nature (and vice versa).</span>
Answer:
please read the answer below
Explanation:
The angular momentum is given by

By taking into account the angles between the vectors r and v in each case we obtain:
a)
v=(2,0)
r=(0,1)
angle = 90°

b)
r=(0,-1)
angle = 90°

c)
r=(1,0)
angle = 0°
r and v are parallel
L = 0kgm/s
d)
r=(-1,0)
angle = 180°
r and v are parallel
L = 0kgm/s
e)
r=(1,1)
angle = 45°

f)
r=(-1,1)
angle = 45°
the same as e):
L = 5kgm/s
g)
r=(-1,-1)
angle = 135°

h)
r=(1,-1)
angle = 135°
the same as g):
L = 5kgm/s
hope this helps!!