3Na2S2O3 + AgBr ------>Na5[Ag(S2O3) 3] +NaBr
from equation 3 mol 1 mol
given x mol 0.10 mol
x= (3*0.10)/1=0.30 mol Na2S2O3
Answer: 0.30 mol Na2S2O3
0.208 is the specific heat capacity of the metal.
Explanation:
Given:
mass (m) = 63.5 grams 0R 0.0635 kg
Heat absorbed (q) = 355 Joules
Δ T (change in temperature) = 4.56 degrees or 273.15+4.56 = 268.59 K
cp (specific heat capacity) = ?
the formula used for heat absorbed and to calculate specific heat capacity of a substance will be calculated by using the equation:
q = mc Δ T
c = 
c = 
= 0.208 J/gm K
specific heat capacity of 0.208 J/gm K
The specific heat capacity is defined as the heat required to raise the temperature of a substance which is 1 gram. The temperature is in Kelvin and energy required is in joules.
Answer:

Explanation:
Hello,
In this case, given that the mass of the product is 0.534 g, we can infer that the percent composition of tin is:

Therefore, the percent composition of oxygen is 6.4% for a 100% in total. Thus, with such percents we compute the moles of each element in the oxide:

In such a way, for finding the smallest whole number we divide the moles of both tin and oxygen by the moles of oxygen as the smallest moles:

Therefore, the empirical formula is:

Best regards.
Answer:
The number of moles of potassium hydroxide, KOH required to make 4 moles of K₂SO₄ is 8 moles of KOH
Explanation:
2KOH + H₂SO₄ → K₂SO₄ + 2H₂O
From the above reaction, we have 2 moles of KOH combining with 1 mole of H₂SO₄ to produce 1 mole of K₂SO₄ and 2 moles of H₂O.
Therefore the number of moles of potassium hydroxide that will be needed to make 4 moles of K₂SO₄ is;
8KOH + 4H₂SO₄ → 4K₂SO₄ + 8H₂O
8 moles of KOH is required to make 4 moles of K₂SO₄.
The question is incomplete, the complete question is;
The table above summarizes data given to a student to evaluate the type of change that took place when substance X was mixed with water. The student claimed that the data did not provide enough evidence to determine whether a chemical or physical change took place and that additional tests were needed. Which of the following identifies the best way to gather evidence to support the type of change that occurred when water and Xwere mixed?
A. Measuring the melting point of the mixture of water and X
B. Adding another substance to the mixture of water and X to see whether a solid forms
C Measuring and comparing the masses of the water, X, and the mixture of water and X
D Measuring the electrical conductivities of X and the mixture of water and X
Answer:
D Measuring the electrical conductivities of X and the mixture of water and X
Explanation:
Unfortunately, I am unable to reproduce the table here. However, from the table, the temperature of the of the mixture of the solid X and water was 101.6°C. This is above the boiling point of water and way below the temperature of the solid X.
This goes a long way to suggest that there was some kind of interaction between the water and X which accounted for the observed temperature of the system of X in water.
The only way we can be able to confirm if X actually dissolved in water is to measure the conductivity of the water. dissolved solids increase the conductivity of water.