I think thats a trick question on the periodic table there is no Z, theres Zi which is zinc but no Z
Answer:

Explanation:
<u>Friction Force</u>
When objects are in contact with other objects or rough surfaces, the friction forces appear when we try to move them with respect to each other. The friction forces always have a direction opposite to the intended motion, i.e. if the object is pushed to the right, the friction force is exerted to the left.
There are two blocks, one of 400 kg on a horizontal surface and other of 100 kg on top of it tied to a vertical wall by a string. If we try to push the first block, it will not move freely, because two friction forces appear: one exerted by the surface and the other exerted by the contact between both blocks. Let's call them Fr1 and Fr2 respectively. The block 2 is attached to the wall by a string, so it won't simply move with the block 1.
Please find the free body diagrams in the figure provided below.
The equilibrium condition for the mass 1 is

The mass m1 is being pushed by the force Fa so that slipping with the mass m2 barely occurs, thus the system is not moving, and a=0. Solving for Fa
![\displaystyle F_a=F_{r1}+F_{r2}.....[1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20F_a%3DF_%7Br1%7D%2BF_%7Br2%7D.....%5B1%5D)
The mass 2 is tried to be pushed to the right by the friction force Fr2 between them, but the string keeps it fixed in position with the tension T. The equation in the horizontal axis is

The friction forces are computed by


Recall N1 is the reaction of the surface on mass m1 which holds a total mass of m1+m2.
Replacing in [1]

Simplifying

Plugging in the values
![\displaystyle F_{a}=0.25(9.8)[400+2(100)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20F_%7Ba%7D%3D0.25%289.8%29%5B400%2B2%28100%29%5D)

Answer:

Explanation:
An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity,
the angle of the slope
is the frictional force, with
being the coefficient of friction and R the normal reaction of the incline
The equation of the forces along the direction perpendicular to the slope is

where
R is the normal reaction
is the component of the weight perpendicular to the slope
Solving for R,

And substituting into (1)

Re-arranging the equation,

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of
, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.
Ans: Beat Frequency = 1.97HzExplanation:
The fundamental frequency on a vibrating string is

<span> -- (A)</span>
<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>
Plug in the values in Equation (A)
<span>so </span>

<span> = 197.97Hz </span>
<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
The electrical potential energy of a charge q located at a point at potential V is given by

Therefore, if the charge must move between two points at potential V1 and V2, the difference in potential energy of the charge will be

In our problem, the electron (charge e) must travel across a potential difference V. So the energy it will lose traveling from the metal to the detector will be equal to

Therefore, if we want the electron to reach the detector, the minimum energy the electron must have is exactly equal to the energy it loses moving from the metal to the detector: