answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
2 years ago
3

In a race over a distance s, runner A starts from rest and accelerates at a1 for the first distance x and then runs at constant

speed. Runner B starts from rest and accelerates at a2 for the first distance x and then runs at constant speed. Runner A begins running as soon as the race begins but B first takes a nap to rest up.What is the longest nap B can take and still not lose the race?
Physics
1 answer:
prohojiy [21]2 years ago
8 0

Answer:

    dt = (x+s)/sqrt(2x)*(1/sqrt(a1) - 1/sqrt(a2))

Explanation:

- Equation of motion for constant acceleration are:

                                        v = a*t

                                     z =( a*t^2)/2  

                                     v^2 = 2*z*s

- Compute time t1:

                                   x = (a*t^2)/2

                                    t_1 = sqrt(2*x/a)

- Velocity @ time t is: v = a*t = a*sqrt(2*x/a)

- Remaining distance (s-x) is run at above calculated speed, so the time t_2 is:

                             t_2 = (s-x)/v = (s-x)/(a*sqrt(2*x/a))

- Compute total T:

                    T = t_1 + t_2 = sqrt(2*x/a) + (s-x)/(a*sqrt(2*x/a))

- Simplify:                   T = (x+s)/sqrt(2*a*x)

                 

- Time taken by each runner:

                                 T_A =(x+s)/sqrt(2*a1*x)

                                T_B = (x+s)/sqrt(2*a2*x)+ dt

Equating the total times (T_A = T_B):  

                      (x+s)/sqrt(2*a2*x)+ dt = (x+s)/sqrt(2*a1*x)

Hence,

                   dt = (x+s)/sqrt(2*a1*x) - (x+s)/sqrt(2*a2*x))

                   dt = (x+s)/sqrt(2x)*(1/sqrt(a1) - 1/sqrt(a2))

You might be interested in
Gold and silicon are mutually insoluble in the solid state and form a eutectic system with a eutectic temperature of 636 k and a
kupik [55]
Yupp its c because my dad farted 
3 0
2 years ago
Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest o
sveta [45]

Explanation:

A) To prove the motion of the center of mass of the cylinders is simple harmonic:

System diagram for given situation is shown in attached Fig. 1

We can prove the motion of the center of mass of the cylinders is simple harmonic if

a_{x} = -\omega^{2}  x

where aₓ is acceleration when attached cylinders move in horizontal direction:

<h3>PROOF:</h3>

rotational inertia for cylinders  is given as:

                                  I=\frac{1}{2}MR^{2} -----(1)

Newton's second law for angular motion is:

                                             ∑τ = Iα ------(2)

For linear motion in horizontal direction it is:

                                             ∑Fₓ = Maₓ ------ (3)

By definition of torque:

                                               τ  = RF --------(4)        

Put (4) and (1) in (2)

                                       RF=\frac{1}{2}MR^{2}\alpha

                                       RF=\frac{1}{2}MR^{2}\alpha

from Fig 3 it can be seen that fs is force by which the cylinders roll without slipping as they oscillate

So above equation becomes

                                   f_{s}=\frac{1}{2}MR\alpha------ (5)

As angular acceleration is related to linear by:

                                          a= R\alpha

Eq (5) becomes

                                    f_{s}=\frac{1}{2}Ma_{x}---- (6)

aₓ shows displacement in horizontal direction

From (3)

                                              ∑Fₓ = Maₓ

Fₓ is sum of fs and restoring force that spring exerts:

                                  \sum F_{x} = f_{s} - kx ----(7)

Put (7) in (3)

                                  f_{s} - kx  = Ma_{x}[/tex] -----(8)

Using (6) in (8)

                               \frac{1}{2}Ma_{x} - kx =Ma_{x}

                                     a_{x} = \frac{2k}{3M} x --- (9)

For spring mass system

                                  a= -\omega^{2} x ----- (10)

Equating (9) and (10)

                                  \omega^{2} = \frac{2k}{3M}

\omega = \sqrt{ \frac{2k}{3M}}

then (9) becomes

                                a_{x} = - \omega^{2}x

(The minus sign says that x and  aₓ  have opposite directions as shown in fig 3)

This proves that the motion of the center of mass of the cylinders is simple harmonic.

<h3 /><h3>B) Time Period</h3>

Time period is related to angular frequency as:

                                   T=\frac{2\pi }{\omega}

                                  T = 2\pi \sqrt{\frac{3M}{2k}

                           

 

5 0
2 years ago
Which force changes the lithosphere by building up the surface?
Sunny_sXe [5.5K]

Answer:

volcanic eruptions

Explanation:

The volcanic eruptions are the ones that manage to cause changes to the lithosphere by building up new material on the surface. Through the volcanic eruptions we have release of pyroclastic material on the surface, and more importantly and in much higher amount lava flows. The lava flows quickly cool off on the surface on the Earth, and as they do they pile up new layers of igneous rocks, thus new crust on the surface of the Earth, causing changes on the lithosphere and shaping it for the foreseeable future.

4 0
2 years ago
A fireboat is to fight fires at coastal areas by drawing seawater with a density of 1030 kg/m3 through a 10-cm-diameter pipe at
GaryK [48]

Answer:

50.93 m/s

199.5 kW

Explanation:

From the question, the nozzle exit diameter = 5 cm, Radius= diameter/2= 5cm/2= 2.5cm. we can convert it to metre for unit consistency= (2.5×0.01)=

0.025m

We can calculate the The cross sectional area of the nozzle as

A= πr^2

A= π ×0.025^2

= 1.9635 ×10^- ³ m²

From the question, the water is moving through the pipe at a rate of 0.1 m /s , then for the water to move through it at a seconds, it must move at

(0.1 / 1.9635 ×10^- ³ m²)

= 50.93 m/s

During the Operation of the pump, the Dynamic energy of the water= potential energy provided there is no loss during the Operation

mgh = 1/2mv²

We can make "h" subject of the formula, which is the height of required head of water

h = (1/2mv²)/mg

h= v² / 2g

h = 50.93² / (2 ×9.81)

h = 132.21m

From the question;

The total irreversible head loss of the system = 3 m,

the given position of nozzle = 3 m

the total head the pump needed=(The total irreversible head loss of the system + the position of the nozzle + required head of water )

=(3 + 3 + 132.21m)

=138.21m

mass of water pumped in a seconds can be calculated since we know that mass is a product of volume and density

Volume= 0.1m³

Density of sea water=1030 kg/m

(0.1 m^3× 1030)

= 103kg

We can calculate the Potential enegry, which is = mgh

= (103 ×9.81 × 138.21)

= 139651.5 Watts

= 139.65kW

To determine required shaft power input to the pump and the water discharge velocity

Energy= efficiency × power

But we are given efficiency of 70 percent, then

139651.5 Watts = 0.7P

=199502.18 Watts

P=199.5 kW

Therefore, the required shaft power input to the pump and the water discharge velocity is 199.5 kW

5 0
1 year ago
refrigerant 134a enters a compressor operating at steady state as saturated vapor at 0.12 MPa and exits at 1.2 MPa and 70 C at a
Afina-wow [57]

Answer:

the power input to the compressor is 7.19Kw

Explanation:

Hello!

To solve this problem follow the steps below.

1. We will call 1 the refrigerant state at the compressor inlet and 2 at the outlet.

2. We use thermodynamic tables to determine enthalpies in states 1 and 2.

(note: Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties such as pressure and temperature.  )

h1[quality=1, P=0.12Mpa)=237KJ/Kg

h2(P=1.2Mpa, t=70C)=300.6KJ/kg

3. uses the first law of thermodynamics in the compressor that states that the energy that enters a system is the same that must come out

Q=heat=0.32kJ/s

W=power input to the compressor

m=mass flow=0.108kg/S

m(h1)+W=Q+m(h2)

solving for W

W=Q+m(h2-h1)

W=0.32+0.108(300.6-237)=7.19Kw

the power input to the compressor is 7.19Kw

7 0
2 years ago
Other questions:
  • Select the circle containing inaccurate information that does not align with the big bang theory.
    6·2 answers
  • Select the volume units that are greater than one liter.
    11·2 answers
  • Elena (60.0 kg) and Madison (65.0 kg) are ice-skating at the Rockefeller ice rink in New Yok city. Their friend Tanner sees Elen
    7·1 answer
  • A capacitor with plates separated by distance d is charged to a potential difference ΔVC. All wires and batteries are disconnect
    13·2 answers
  • The cheetah is considered the fastest running animal in the world. Cheetahs can accelerate to a speed of 21.7 m/s in 2.50 s and
    13·1 answer
  • Diffraction spreading for a flashlight is insignificant compared with other limitations in its optics, such as spherical aberrat
    7·1 answer
  • A container is filled with an ideal diatomic gas to a pressure and volume of P1 and V1, respectively. The gas is then warmed in
    5·1 answer
  • the steel bed of a suspension bridge is 200m long at 20 C. If the extremes of temperature to which it might be exposed are -30 C
    9·1 answer
  • The refractive index n of transparent acrylic plastic (full name Poly(methyl methacrylate)) depends on the color (wavelength) of
    7·1 answer
  • A gold puck has a mass of 12 kg and a velocity of 5i – 4j m/s prior to a collision with a stationary blue puck whose mass is 18
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!