Unlike acceleration and velocity, speed does not need to specify the direction of motion. Speed is a scalar quality.
vf^2 = 2ad
vf^2 = 2(9.81)(44m)
vf^2 = 863.28
vf = √863.28
vf = 29.4 - using equations of motion
ME = PE + KE
ME = mgh + 1/2mv^2
ME = (1)(9.81)(44) + 1/2(1)(3^2)
ME = 431.64 + 4.5
ME = 436.14 - using conservation of energy
hope this helps :)
<em>projectile can only follow the straight line path when it is launched upward straightly so the correct option is <u>90 degree with respect to horizontal x -axis ..:)</u></em>
k = spring constant of the spring = 85 N/m
m = mass of the box sliding towards the spring = 3.5 kg
v = speed of box just before colliding with the spring = ?
x = compression the spring = 6.5 cm = 6.5 cm (1 m /100 cm) = 0.065 m
the kinetic energy of box just before colliding with the spring converts into the spring energy of the spring when it is fully compressed.
Using conservation of energy
Kinetic energy of spring before collision = spring energy of spring after compression
(0.5) m v² = (0.5) k x²
m v² = k x²
inserting the values
(3.5 kg) v² = (85 N/m) (0.065 m)²
v = 0.32 m/s
Answer:
halved
Explanation:
The velocity of the a wave is obtained by multiplying the frequency and wavelength.

Where
v = Velocity
f = Frequency
= Wavelength
The velocity here is constant. So, if the frequency is doubled the wavelength is halved.